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The Dirac Catastrophe

Näıve application of maximum likelihood:

max
f∈F

n∑
i=1

log f(Xi)

for any sufficiently rich class of densities F yields

f̂(x) = dFn = n−1
∑n

i=1 δXi
(x)

Vapnik (1998) Density estimation as a stochastic ill-posed problem.
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Regularization as Good Thinking

I.J. Good’s (1971) “Bayesian in mufti” penalized MLE:

max
f∈F

1

n

n∑
i=1

log f(xi) −

∫
f(x)dx − λ

∫
((

√
f(x)) ′)2dx

or, with u =
√

f,

max
u∈U

2

∫
log u(x)dFn(x)− ‖ u ‖2 −λ ‖ u ′ ‖2

Penalty Interpretation: Shrinking toward minimal Fisher information.
Euler Condition: dFn

u = u − λu ′′

Boundary Condition: limx→±∞ u(x) = 0.
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Good Thinking 2.0

Good and Gaskins (1971) observed that the penalty,

J(f) =

∫ (
(
√

f) ′
)2

dx

produced f̂’s that “looked too straight,” and suggested the penalty,

J(f) =

∫ (
(
√

f) ′
)2

dx +

∫ (
(
√

f) ′′
)2

dx

focusing more on curvature as a measure of roughness.
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Penalizing Log Density

Silverman (1982) proposed penalizing the third derivative of log f,

J(f) =

∫ (
(log f) ′′′

)2
dx

thereby shrinking toward the Gaussian density: J(φ) = 0. Subsequent
authors have emphasized the classical smoothing spline penalty:

J(f) =

∫ (
(log f) ′′

)2
dx

Gu (2002) has an R implementation. This logspline approach has obvious
roots in exponential family theory, Stone et al (1997) and Barron and
Sheu (1991).
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One, too, many Regularizations

Another early approach was the histosplines of Boneva, Kendall and
Stefanov (1971)

min
f

{

∫
(f(x) − fn(x))2dx + λ

∫
(f(k)(x))2dx

where fn is a preliminary, undersmoothed histogram.
Closely related are the more recent proposals of Vapnik (1998)

min
F

{

∫
(F(x) − Fn(x))2dx + λ

∫
(F(k)(x))2dx

min
F

{(

∫
|F(x) − Fn(x)|dx)2 + λ

∫
(F(k)(x))2dx

where Fn is the usual empirical cdf,
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Regularization for Bivariate Density Estimation

For bivariate densities there are fewer proposals. The only implemented
proposal seems to be the thin-plate log density estimator:

min
g

n∑
i=1

g(zi) + λJ(g)

with roughness penalty:

J(g) = ||∇2g||2 =

∫ ∫
((∂2g/∂x2)2 + 2(∂2g/∂x∂y)2 + (∂2g/∂y2)2)dxdy

Equivariant to translation and rotation
Domain Ω = |R2 is convenient, but not universally appropriate.
Meinguet(1979), Wahba(1990), Green and Silverman (1998), Gu (2002).
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Total Variation Regularization

Replacing L2 by L1 penalties leads to total variation regularization.
For regression problems such penalties have been considered by:

Rudin, Osher, and Fatemi (1992)

Koenker, Ng, and Portnoy (1994)

Mammen and van de Geer (1997)

Davies and Kovac (2001)

Koenker and Mizera (2004)

Sardy and Tseng (2005).
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Motivation for Total Variation Roughness

L2 penalties abhor sharp bends, good for gently rolling hills.

L1 (total variation) penalties better tolerate sharp peaks.
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Three Variations on Total Variation for f : [a, b] → |R

Jordan(1881) ∨
f = sup

π

n−1∑
k=0

|f(xk+1) − f(xk)|

where π denotes partitions: a = x0 < x1 < . . . < xn = b.

Banach (1925) ∨
f =

∫
N(y)dy

where N(y) = card{x : f(x) = y} is the Banach indicatrix.

Vitali (1905) ∨
f =

∫
|f ′(x)|dx

for absolutely continuous f.
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Total Variation for f : |Rk → |Rm

A convoluted history from Vitali (1905) to de Giorgi (1954)
For smooth f : |R → |R ∨

Ω

f =

∫
Ω

|f ′(x)|dx

For smooth f : |Rk → |Rm

∨
Ω

f =

∫
Ω
‖∇f(x)‖dx

Extension to nondifferentiable f via theory of distributions.∨
Ω

f =

∫
Ω
‖∇f(x) ∗ϕε‖dx
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Total Variation Penalties

Univariate: Ω ⊂ |R1

J0(f) =
∨
Ω

(log f) =

∫
Ω

|(log f) ′|dx

J1(f) =
∨
Ω

(log f) ′ =

∫
Ω

|(log f) ′′|dx

Bivariate: Ω ⊂ |R2

J0(f) =
∨
Ω

log f =

∫
Ω
‖∇ log f‖dx

J1(f) =
∨
Ω

∇ log f =

∫
Ω
‖∇2 log f‖dx
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TV Penalized Maximum Likelihood Log Density Estimation

We have the generic problem, optimizing over a set of densities F

max
f∈F

{
∑

log f(Xi) | J(f) 6 K}

We started by focusing on penalizing total variation of g = log f, and
considering Lagrangean expressions like,

max
g

{

∫
gdFn −

∫
eg − λ‖Dg‖}

where D is some linear (differential) operator, e.g. Dg = g ′′, or
Dg = ∇2g, and ‖ · ‖ is an appropriate norm. For total variation we would
have, for example, ∨

∇g =

∫
‖∇2g(x)‖1dx.
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Duality

These are a convex optimization problems with interesting dual problems.
The primal penalized maximum likelihood problem

max
g

{

∫
gdFn −

∫
eg − λ‖Dg‖}

has equivalent dual formulation,

max
h

{−

∫
f log f | f = d(Fn + D∗h)/dx > 0, ‖h‖∗ 6 λ}

where D∗ is the adjoint of D, and ‖ · ‖∗ is the dual of the norm ‖ · ‖.
So we are (really) maximizing (Shannon) entropy!
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Our Favorite Univariate Example

For univariate densities solving the primal problem,

max
g

{

∫
gdFn −

∫
eg − λ

∫
|g ′′|}

is equivalent to solving the dual problem,

max
h

{−

∫
f log f | f = d(Fn + h ′′)/dx > 0, ‖h‖∞ 6 λ}

Dual of L1 norm is the L∞ norm.

Solution log densities are piecewise linear.

Sup constraint on h is a (generalized) tube restriction.

There are many variations on this construction.
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Arcana of Implementation

Optimization
I Interior Point Methods
I Sparse Algebra

Discretization
I Delone/Voronoi Tesselations
I Total Variation for Simple Functions

Domains
I Undata Analysis
I Boundary Constraints
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Interior Point Optimization

There has been a revolution in convex optimization:

Frisch (1954), Fiacco and McCormick (1968) Karmarker (1984), . . .

Inequality constraints are replaced by logarithmic barrier functions
enabling Newton-type steps.

Sparse linear algebra is essential element for large probems.

We are using a Danish commercial implementation called Mosek by
Erling Anderson, and open source code by Michael Saunders.
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Discretization
For scattered data one natural discretization employs piecewise linear
functions on Delone triangulations:

Delone/Voronoi Tessellation
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Total Variation for Triograms
Theorem: For functions f : |R2 → |R continuous and piecewise linear on a
triangulation, T, and any rotationally invariant norm, ‖ · ‖, chosen to
define: ∨

∇f =

∫
‖∇2f‖dx

we have ∨
∇f =

∑
e∈E

‖∇+
e −∇−

e ‖2 ‖e‖2,

where summation is over all the edges of the triangulation, ∇+
e ,∇−

e are
gradients on the two triangles adjacent to the edge e, and ‖e‖2 denotes
the length of the edge e.
Remark: Parameterizing f by its vector of function values ξ = (f(xi)) at
the vertices of T we can write,∨

∇f = ‖Aξ‖1,

that is, as an `1-norm of a linear transformation of ξ. The matrix A is
extremely sparse.
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Undata Analysis

An intrinsic difficulty of density estimation involves boundary conditions
and tail behavior. This draws us into the shadowy realm of undata
analysis.

In the Linnean idiom, undata are living things with wavy edges.
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Undata Analysis
In our context, undata are vertices of the Delone triangulation that aren’t
observed – points that do appear in the “prior,” so to speak, but do not
contribute to the fidelity/likelihood. They enable us to extend the domain
beyond the observed points and increase the flexibility of the triangulation
in the interior of the domain.
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Chicago Land Values I

Figure: Perspective Plot of Median Regression Model for Chicago Land Values.
Based on 1194 vacant land sales in Chicago Metropolitan Area in 1995-97, prices
in dollars per square foot.
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Chicago Land Values II

Figure: Chicago Land Values: Based on 1194 vacant land sales and 7505
“virtual” sales (undata) introduced to increase the flexibility of surface.
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Density Estimation: Beyond the Histogram
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How do various methods perform for this test problem?
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Kernel Density Estimation

0 5 10 15 20 25

0.
0

0.
1

0.
2

0.
3

0.
4

True
Kernel UCV
Kernel BCV

Two kernel estimates using Scott’s cross-validation bandwidth selection.
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Good’s Penalized Density Estimation
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Good’s (1971) original (Fisher information) L2 penalty.
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Total Variation Penalized Density Estimation
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Total Variation penalty on (log f) ′.
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A Bivariate Target Density

A bivariate version of the mixture of lognormals example.
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A Bivariate Target Density

A bivariate version of the mixture of lognormals example.
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Bivariate Total Variation Penalized Density Estimate

∨
Ω∇logf penalty, λ = 2.
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Bivariate Total Variation Penalized Density Estimate

∨
Ω∇logf penalty, λ = 2.
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Bivariate Total Variation Penalized Density Estimate

∨
Ω∇logf penalty, λ = 2.
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Bivariate Total Variation Penalized Density Estimate

∨
Ω∇logf penalty, λ = 2.
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Bivariate Total Variation Penalized Density Estimate

∨
Ω∇logf penalty, λ = 2.
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Bivariate Total Variation Penalized Density Estimate

∨
Ω∇logf penalty, λ = 2.
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Bivariate Total Variation Penalized Density Estimate

∨
Ω∇logf penalty, λ = 2.
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Larger λ’s Flatten the Estimate

∨
Ω∇logf penalty, λ = 5.
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Larger λ’s Flatten the Estimate

∨
Ω∇logf penalty, λ = 10.
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Smaller λ’s Roughen the Estimate

∨
Ω∇logf penalty, λ = 1.
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Smaller λ’s Roughen the Estimate

∨
Ω∇logf penalty, λ = 0.5.
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Smaller λ’s Roughen the Estimate

∨
Ω∇logf penalty, λ = 0.1.
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Dogma of Goniolatry (Revised)

“Goniolatry, or the worship of angles, ...”
Thomas Pynchon (Mason and Dixon, 1997).

Regularization provides a unified framework for density estimation.

Duality leads to interesting connections to maximum entropy
estimation.

Total variation is a natural roughness penalty for some density
estimation problems, particularly when the target density is edgy.

Finite element methods and sparse linear algebra are computationally
very crucial.

Qualitative constraints and extensions to semi-parametric models are
possible.
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For Further Details

Koenker and Mizera (2006) Density Estimation by TV Regularization,
Doksum Festschrift.

Koenker and Mizera (2006) The Alter Egos of the Regularized
Likelihood Density Estimators: Deregularized maximum entropy
Shannon, Rényi, Simpson, Gini and Stretched Strings, Proceedings of
the 7th Prague Symposium.

Koenker and Mizera (2006) Primal and Dual Formulations Relevant
for the Numerical Estimation of a Probability Density via
Regularization, Tatra Mountains Math. Pub.

Available from http://www.econ.uiuc.edu/∼roger
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