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Lecture 9
“Consistency and Asymptotic Efficiency of the MLE”

Ref: Wald (1949), Lehmann §6.2.

We will begin with a very simple special case which illustrates the main line of argument.
Let Z1, . . . , Zn be iid from {Pθ, f(z|θ)}, where Pθ(A) =

∫
A f(z|θ)dz. Assume

A1. The elements of Pθ are distinct,
A2. The elements of Pθ have common support
A3. The parameter space Θ ∈ < contains an open interval Θ0 containing θ0 the true parameter.

Lemma: Under A1-3 for any fixed θ 6= θ0,

Pθ0{
n∏
i=1

f(Zi|θ0) >
n∏
i=1

f(Zi|θ)} → 1 as n→∞

Proof: The event in { } is ⇔ to

1

n

∑
log f(Zi|θ)/f(Zi|θ0) < 0

By the WLLN the lhs converges to Eθ0 log(f/f0). Since − log(x) is strictly convex

Eθ0 log(f/f0) < log(Eθ0(f/f0))

= log(

∫
fdy)

= 0 2

This is the essence of Wald’s argument. If the parameter space Θ is finite, then the Lemma
implies directly that θ̂ is consistent, since it shows that, eventually, the likelihood is larger at θ0

than at any other θ.

Theorem: Under A1-3, if Θ is finite, then the mle θ̂n exists, is unique with probability tending
to 1 and is consistent, i.e., θ̂ → θ0.

Proof: Let Θ = {θ0, θ1, . . . , θk} and Ein be the event
∑

log(fi/f0) < 0. Then since

P{Ein} → 1 i = 1, . . . , k ⇒ P (E1n ∩ . . . ∩ Ekn} → 1

the result follows. This implication is immediate from Bonferroni’s inequality

P (∩Ein) ≥ 1−
∑

P (Ecin)
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Bonferroni’s Digression Recall that (De Morgan’s law) ∩Ai = (∪Aci )c so that

P (∩Ai) = P (∪Aci )c = 1− P (∪Aci ) ≥ 1−
∑

P (Aci ).

This is usually used to adjust critical values for confidence interval computations: if you
have g contrasts and want to do simultaneous confidence intervals then you can use c∗α where
α∗ = α/(2g), and α is the desired overall confidence level. There are several variants and
strengthenings of the basic Bonferroni inequality. For example one can show that,∑

P (Ai) ≤ P (∪Ai) +
∑∑

P (Ai ∩Aj)

Without further conditions on f one can’t go further, even the uncountable Θ is fraught
with danger. Possible escapes

(Wald) (i) ad hoc assumptions about lim f(z|θ)
(Cramer) (ii) differentiability assumptions of f .

we will try to illustrate the latter approach.

Theorem: Under A1-3, if f(z|θ) is differentiable wrt to θ in Θ0 with derivative f ′(z|θ), then
wp→ 1

n∑
i=1

f ′(z|θ)
f(zi|θ)

= 0

has a root θ̂n such that θ̂n → θ0.

Proof: Choose a such that (θ0 ± a) ⊂ Θ0 and set

Sn = {z|ln(θ0) > ln(θ0 − a) and ln(θ0) > ln(θ0 + a)}

where ln(θ) =
∑n
i=1 log f(zi|θ). By the previous Theorem, Pθ0{Sn} → 1.

For any z ∈ Sn, there exists θ̂n such that θ̂n ∈ (θ0 ± a) at which l(θ, z) has a local max,
and therefore l′(θ) = 0 Hence, for any a > 0, but sufficiently small, there exists a sequence
{θ̂n} = {θ̂n(a)} of roots such that

∗ Pθ0{|θ̂n − θ0| < a} → 1

It remains to show that sequence doesn’t depend on a. For this, let θ∗n be root closest to θ0

(which exists because the limit of sequence of roots is a root by continuity of l). Now θ∗n satisfies
(∗) but is independent of a. 2

Remarks: In some problems the likelihood isn’t concave so we can’t guarantee a unique
maximum, and in this case it is sometimes difficult to choose the right root. Often we will
see that it is possible to find a root near an initial consistent estimator – this helps. Cauchy
likelihood is an interesting example.

Asymptotic Normality of the MLE

Theorem: Let Z1, . . . , Zn be iid from {Pθ, f(z|θ)} and assume:
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(i) Θ is an open interval not necessarily finite.

(ii) Pθ are distinct and have common support

(iii) f(z|θ) is thrice differentiable wrt to θ and f ′′ is continuous wrt θ.

(iv)
∫
f(z|θ)dz is 3 times differentiable under

∫
.

(v) I(θ) = V (∂ log f/∂θ) satisfies 0 < I(θ) <∞.

(vi) For any θ1 ∈ Θ, there exists c > 0 and M(z) such that

∂3 log f(z|θ)/∂θ3 ≤M(z) for all z ∈ Z and θ ∈ (θ0 ± c)

and Eθ0M(Z) <∞,

Then for any consistent sequence, θ̂n → θ0, of roots to the likelihood satisfies,

(∗)
√
n(θ̂n − θ0) ; N (0, I(θ0)−1),

Proof: Let l(θ) =
∑

log f(zi|θ) as above and expand l′(θ̂n) about θ0 for any fixed z,

l′(θ̂n) = l′(θ0) + (θ̂n − θ0)l′′(θ0) +
1

2
(θ̂n − θ0)2l′′′(θ∗n)

where |θ∗n − θ0| < |θ̂n − θ0|. By hypothesis l′(θ̂n) = 0 so that

√
n(θ̂n − θ0) =

−n−1/2l′(θ0)

n−1l′′(θ0) + 1
2n
−1(θ̂n − θ0)l′′′(θ∗n)

Consider these terms in turn:

(1) n−1/2l′(θ0) ; N (0, I(θ0))

n−1/2l′(θ0) =
√
n[n−1

n∑
i=1

l′i − El′i]

≡
√
n[n−1

∑
(Xi − µ)]

where Xi = ∂ log f(Zi|θ0)/∂θ, E(Xi) = 0, and V (Xi) = I(θ0) so n−1/2l′(θ0) ; N (0, I(θ))
by the simplest form of the CLT for iid r.v.’s.

(2) Now consider the first term in the denominator. Set Xi = ∂2

∂θ2
log f(Zi|θ0) and recall that

EXi = −I(θ0), so

n−1l′′(θ0) = n−1
n∑
i=1

(
f ′i
fi

)2

− f ′′i
fi

= n−1
∑

Xi

→ −I(θ0)
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(3) Finally, consider, n−1(θ̂n − θ0)2l′′′(θ∗n)→ 0

|n−1l′′′(θ)| =

∣∣∣∣∣ 1n∑ ∂3

∂θ3
log f(Zi|θ0)

∣∣∣∣∣
≤ 1

n
[M(Z1) + . . .+M(Zn)]

→ Eθ0M(Z1) ( by (vi))

But, by Slutsky, since θ̂n → θ0 the whole term tends to zero.

Then, putting the pieces back together using Slutsky again we have the result.

Example 1: 1pxf ’s
Finding the mle for the natural parameter η in a 1pxf involves solving

(∗)
∑

T (zi) + nd′0(η) = 0

Checking the second order conditions we have

∂2l

∂η2
= nd′′0(η)

but recall that V (T (z)) = −d′′0(η) so d′′0(η) < 0 so the 1pxf likelihood must be globally concave.
Note that the 3rd derivative conditions are trivially satisfied since all higher derivatives are
independent of zi. Thus, wp→ 1, (*) has a unique root η̂ which is consistent and asymptotically
efficient √

n(η̂ − η) ; N (0, I(η)−1).

Example 2: Location Model

Suppose Z1, . . . , Zn come from f(z−θ) where f is differentiable and f(z) > 0 for all z. Then
the likelihood equation is

n∑
i=1

f ′(zi − θ)
f(zi − θ)

= 0

If f is strongly unimodal, i.e., f ′/f strictly decreasing, i.e., log f is strictly concave, then the
objective function, i.e., log likelihood is strictly concave and therefore has a unique root. The
Laplace distribution, or double exponential, is a borderline case. since f ′/f = 1/2sgn(·) which
is “just barely monotone.”

Example 3: Zi iid U [0, θ]

Here none of the theorems apply. What about the mle? Recall that the MLE is θ̂n = Z(n).
Suppose for convenience θ0 = 1.

P (Z(n) < z) =


zn for z ∈ [0, 1]
0 z < 0
1 z > 1
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Now consider transformed Z(n), with Yn = (1− Z(n))/bn so Z(n) = 1− bnYn so

P (Yn < y) = P ((1− Z(n))/bn < y)

= P (1− bny < Z(n))

=


1− (1− bny)n y ∈ (0, 1/bn)
0 y < 0
1 y > 1/bn

Now choose bn to stabilize P (Yn < y). Note if bn = b0, a constant (1−b0y)n → 0 If bn = n−2,
then (1− y/n2)n → 1 However, bn = n−1 we have

(1− y/n)n → e−y

so, as baby bear says, this rate is “just right” and the normalized version of the MLE converges
to the standard exponential distribution,

P (n(1− Z(n)) < z)→ e−z

or
n(1− Z(n)) ; E(0, 1)

More generally we have if Z ∈ U [0, θ0]. then

n(θ0 − Z(n)) ; E(0, θ0)

It is interesting to compare the MLE θ̂n with the estimator based on the sample mean. If
Z ∼ U [0, θ], then EZ = θ0/2 and V Z = θ2/12 so 2Z̄ → θ0 and therefore

√
n(2Z̄ − θ0)→ N (0, θ2

0/3).

Thus θ̃n = 2Z̄ is a consistent estimator of the parameter θ, but it converges only at rate 1/
√
n,

while the MLE converges at the rate 1/n, so the mean-based estimator has zero asymptotic
efficiency in this case.

We now turn to the problem posed by multiple roots of the likelihood. The first result gives
a simple “solution” to this problem if we have a consistent estimator available.

Theorem: (One-Steps) Given the assumptions of the previous theorem, suppose that θ̃n is
any
√
n consistent estimator of θ0, i.e., for any ε there exists M such that

P (
√
n|θ̃n − θ0| ≥M ] < ε.

Then θ̂n = θ̃n − l′(θ̃n)/l′′(θ̃n) is asymptotically efficient, i.e.,
√
n(θ̂n − θ0) ; N (0, I(θ0)−1).

Proof: (Heuristics) The name comes from the fact that θ̂n is one Gauss-Newton step toward the
mle from θ̂n. Suppose l were quadratic, then

l(θ) = l(θ̃) + (θ − θ̃)l′(θ̃) +
1

2
(θ − θ̃)2l′′(θ̃)
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would hold exactly. Then if we wanted to maximize l(θ), we’d let l′(θ) = 0 or

l′(θ̃) = −(θ − θ̃)l′′(θ̃)
or

θ̂ = θ̃ − l′(θ̃)/l′′(θ̃)

so, in effect, we are behaving as if the quadratic approximator is valid near θ̂n. More formally,
expand as in the main theorem and substitute in definition of θ̂n,

l′(θ̃n) = l′(θ0) + (θ̃n − θ0)l′′(θ0) +
1

2
(θn − θ0)2l′′′(θ∗n)

√
n(θ̂n − θ0) = −n

−1/2l′(θ0)

n−1l′′(θ̃n)
+
√
n(θ̃n − θ0)

[
1− l′′(θ0)

l′′(θ̃n)
− 1

2
(θ̃n − θ0)

l′′′(θ∗n)

l′′(θ̃n)

]

first term as above second term has leading term Op(1) and

l′′(θ0)

l′′(θ̃n)
→ 1

and last term → 0 as in the proof of the main result.

Example: Super-Efficiency (Hodges (1953))

Suppose Z1, . . . , Zn are iid N (θ, 1), so I(θ) = 1 and let θ̂n =

{
Z̄ if |Z̄| ≥ n−1/4

aZ̄ otherwise
This

is a “pre-test shrinker” if a < 1.) Now
√
n(θ̂n − θ0) ; N (0, v(θ)) where v(θ) = 1 for θ ± 0 and

v(θ) = a2 when θ = 0. So for a < 1, the CRLB is violated! By Chebyshev if θ = 0, then for
large n, θ̂n = aZ̄, if not, not.

Proof: If θ0 = 0, P (|Z̄| > ε) ≤ V (Z̄)
ε2

so P (|Z̄|) > n−1/4) ≤ 1/n
1/
√
n

= 1√
n
→ 0 so wp1 θ̂n = aZ̄.

Remark: Le Cam, Bahadur and others have shown that this has to happen on a set of
Lebesgue measure zero.

Multiparameter Extensions

Theorem: Let Z1, . . . , Zn be iid from {f(z|θ0), Pθ}.

Assume

(i) Pθ are distinct

(ii) Pθ have common support

(iii) ∃ Θ0 ⊂ Θ s.t. θ0 ∈ Θ0 and all 3rd partials exist for θ ∈ Θ0

(iv) Eθ0∇ log f = 0 and Ijk(θ0) = Eθ0

(
∂ log f
∂θj

∂ log f
∂θk

)
= −Eθ0

(
∂2

∂θj∂θk
log f

)
(v) I(θ) is positive definite for all θ ∈ Θ0 and the vector of “scores” s = ∇ log f is linearly

independent
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(vi) There exist functionsMijk(z) such that,
∣∣∣ ∂
∂θi∂θj∂θk

log f
∣∣∣ ≤Mijk(z) ∀θ ∈ Θ0. and Eθ0Mijk(z) <

∞.

Then with probability tending to 1, there exists θ̂n solving the likelihood equations,∇θl(θ|z) =
0 such that ‖ θ̂n − θ0 ‖→ 0 and

√
n(θ̂n − θ0) ; Np(0, I−1(θ0))

Proof: See Lehmann

Corollary: (One-Steps) If the previous conditions hold and θ̃n is
√
n consistent for θ0, then

θ̂n = θ̃n − [∇2l(θ̃n)]−1∇l(θ̃n)

is asymptotically efficient.
Remark: The alternative, θ̂n = θ̃n + [I(θ̃n)]−1∇l(θ̃n) will also work. This is the method-of-
scoring version of the one-step.
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