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Lecture 9
“Consistency and Asymptotic Efficiency of the MLE”

Ref: Wald (1949), Lehmann §6.2.

We will begin with a very simple special case which illustrates the main line of argument.
Let Z1,...,Z, be iid from {Py, f(2]0)}, where Py(A) = [, f(z]|0)dz. Assume

Al. The elements of Py are distinct,
A2.  The elements of Py have common support
A3. The parameter space © € R contains an open interval ©g containing 6y the true parameter.

Lemma: Under A1-3 for any fixed 6 # 6,

n

Poo{]] £(Zil6o) > T] f(Zil6)} — 1 as n — 0o
=1 =1

Proof: ~ The event in { } is < to

3" log £(Z16)/ £(Zi160) < 0

By the WLLN the lhs converges to Ep, log(f/fo). Since —log(z) is strictly convex

Eg,log(f/fo) < log(Es,(f/fo))
— log( [ fdy)

= 0 O

This is the essence of Wald’s argument. If the parameter space © is finite, then the Lemma
implies directly that 6 is consistent, since it shows that, eventually, the likelihood is larger at 6
than at any other 6.

Theorem: Under A1-3, if © is finite, then the mle 6,, exists, is unique with probability tending
to 1 and is consistent, i.e., 8 — 0.

Proof:  Let © = {6p,01,...,0;} and E;;, be the event Y log(f;/fo) < 0. Then since
P{Ezn}—>1 i=1,...,k @P(ElnﬁﬂEkn}—)l
the result follows. This implication is immediate from Bonferroni’s inequality
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Bonferroni’s Digression Recall that (De Morgan’s law) NA; = (UAS)¢ so that
P(NA;) = P(UAS)® =1 — P(UAS) > 1) P(A5).

This is usually used to adjust critical values for confidence interval computations: if you
have g contrasts and want to do simultaneous confidence intervals then you can use c}, where
a* = a/(2g), and « is the desired overall confidence level. There are several variants and
strengthenings of the basic Bonferroni inequality. For example one can show that,

Without further conditions on f one can’t go further, even the uncountable © is fraught
with danger. Possible escapes

(Wald) (i)  ad hoc assumptions about lim f(z|0)
(Cramer) (ii) differentiability assumptions of f.

we will try to illustrate the latter approach.

Theorem:  Under A1-3, if f(z|0) is differentiable wrt to 6 in ©¢ with derivative f/(z|6), then
wp — 1

SSSC0
= f(=il0)
has a root én such that én — 0.
Proof: ~ Choose a such that (0y £ a) C ©p and set
Sy = {2|ln(00) > 1,(6p — a) and 1,,(6p) > 1,,(0g + a)}
where 1,,(6) = i, log f(z;]|0). By the previous Theorem, Py, {S,} — 1.

For any z € S, there exists 6, such that 6, € (6 £ a) at which (6, z) has a local max,
and therefore I'(f) = 0 Hence, for any a > 0, but sufficiently small, there exists a sequence
{0} = {0n(a)} of roots such that

% Py {|0n — 00| <a} —1
It remains to show that sequence doesn’t depend on a. For this, let 6} be root closest to

(which exists because the limit of sequence of roots is a root by continuity of /). Now 6 satisfies
(%) but is independent of a. O

Remarks: In some problems the likelihood isn’t concave so we can’t guarantee a unique
maximum, and in this case it is sometimes difficult to choose the right root. Often we will
see that it is possible to find a root near an initial consistent estimator — this helps. Cauchy
likelihood is an interesting example.

Asymptotic Normality of the MLE

Theorem:  Let Z1,...,Z, be iid from {Py, f(z]|0)} and assume:



(i) © is an open interval not necessarily finite.
(ii) Py are distinct and have common support
(iii) f(z]0) is thrice differentiable wrt to 6 and f” is continuous wrt 6.
(iv) [ f(z|0)dz is 3 times differentiable under [ .
(v) 1(0) = V(0log f/00) satisfies 0 < I(#) < oo
(vi) For any 0y € O, there exists ¢ >0 and M(z) such that
D3 log f(2]0)/06% < M(z) for all z € Z and 6 € (fy =+ ¢)
and Eg,M(Z) < oo,
Then for any consistent sequence, 0,, — Ay, of roots to the likelihood satisfies,

(#)  Vn(0n — o) ~ N(0,1(60)""),
Proof:  Let 1(9) = Y log f(z|0) as above and expand I'(6,,) about 6y for any fixed z,
. . 1 .
U(On) = 1'(00) + (O — 00)1"(B0) + 5 (0 — 60)*1"(67)

where |0% — 0| < |0, — 0o|. By hypothesis I'(6,,) = 0 so that

—n"'/21'(6)

Vn(0n — o) = n=1"(0,) + 1 ~1(8,, — 60)1"(67)

Consider these terms in turn:

(1) n=Y21(0y) ~ N(0,1(6y))

n_1/2l,(90) _ —lzl/
= nt Z

where X; = dlog f(Z]00)/00, E(X;) = 0,and V(X;) = I(6) so n=/2I'(8y) ~ N(0,1(6))
by the simplest form of the CLT for iid r.v.’s.

(2) Now consider the first term in the denominator. Set X; = 53—922 log f(Zi|6p) and recall that
EX; = —1(0o), so

SRR
= n_IZXZ-

— —I(eo)



(3) Finally, consider, n=1(6,, — 0)21" (6*) — 0

=) = 2393 log f (Zil6o)

< %[M(Zl) b M(Z0)]

= EgM(Z1)  (by (vi))

But, by Slutsky, since 6,, — 6y the whole term tends to zero.

Then, putting the pieces back together using Slutsky again we have the result.

Example 1: 1pxf’s
Finding the mle for the natural parameter 7 in a 1px f involves solving

() > T(z)+ndy(n) =

Checking the second order conditions we have

92l
87172 = ”dg(ﬁ)

but recall that V(T'(z)) = —d{j(n) so dj(n) < 0 so the 1pz [ likelihood must be globally concave.
Note that the 3rd derivative conditions are trivially satisfied since all higher derivatives are
independent of z;. Thus, wp — 1, (*) has a unique root 7 which is consistent and asymptotically

efficient
V(i) —n) ~ N(0,1(n) 7).

Example 2: Location Model

Suppose Z1, ..., Z, come from f(z—0) where f is differentiable and f(z) > 0 for all z. Then

the likelihood equation is
zn: Flai=0) _,
i=1 f(zl - 9)

If f is strongly unimodal, i.e., f'/f strictly decreasing, i.e., log f is strictly concave, then the
objective function, i.e., log likelihood is strictly concave and therefore has a unique root. The
Laplace distribution, or double exponential, is a borderline case. since f’/f = 1/2sgn(-) which
is “just barely monotone.”

Ezample 3:  Z; iid U0, 6]

Here none of the theorems apply. What about the mle? Recall that the MLE is 6, = Z(n)-
Suppose for convenience 6y = 1.

2" for z € ]0,1]
P(Z(n)<z): 0 2<0
1 z>1



Now consider transformed Z(,,y, with Y,, = (1 — Z(,y)/bp 80 Z(5) =1 = b,Y;, s0
PY,<y) = P((1—2Zy)/bn<y)
= P(l-byy< Z(n))

1- (1 - bny)n RS (07 1/bn)
= 0 y <0
1 y>1/b,

Now choose b, to stabilize P(Y,, < y). Note if b, = by, a constant (1 —boy)" — 0 If b, = n~2,

then (1 —y/n?)" — 1 However, b, = n~! we have

(1 —y/n)* =™

S0, as baby bear says, this rate is “just right” and the normalized version of the MLE converges
to the standard exponential distribution,

P(n(1—Zy) <z)—e”
or

More generally we have if Z € U]0, §y]. then
n(0o — Z(ny) ~ E(0,0)

It is interesting to compare the MLE 6,, with the estimator based on the sample mean. If
Z ~ UI0,0], then EZ = 6y/2 and VZ = 6%/12 so 2Z — 6y and therefore

Vn(2Z — 6y) — N(0,602/3).

Thus 6, = 27 is a consistent estimator of the parameter #, but it converges only at rate 1/y/n,
while the MLE converges at the rate 1/n, so the mean-based estimator has zero asymptotic
efficiency in this case.

We now turn to the problem posed by multiple roots of the likelihood. The first result gives
a simple “solution” to this problem if we have a consistent estimator available.

Theorem: (One-Steps) Given the assumptions of the previous theorem, suppose that 6, is
any /n consistent estimator of 6y, i.e., for any ¢ there exists M such that

P(/n|6, — 6y > M] < e.
Then 6, = 0, — I'(0,)/1"(6,,) is asymptotically efficient, i.e., \/n(f, — 0p) ~ N(0,1(6p)").

Proof: (Heuristics) The name comes from the fact that 6, is one Gauss-Newton step toward the
mle from 6,,. Suppose [ were quadratic, then

1) = 1(0) + (0 — O)'(0) + %(9 —6)%"(0)



would hold ezactly. Then if we wanted to maximize [(6), we’d let I'(6) = 0 or

'G) = —(0-01©9

or

6 = 0-1)/1"0)

so, in effect, we are behaving as if the quadratic approximator is valid near 0,,. More formally,
expand as in the main theorem and substitute in definition of 8,

U(0n) = U(00) + (0 — 60)l" (60) + %(Gn —00)*1" (0,)

A n=1/2y N " N e
Vn(0, —6y) = —n_ll”l((;o)) +v/n(0, —6p) [1— %ZO; _ %(en - eo)ll”((gn))

first term as above second term has leading term O, (1) and

l”(eo)

— — 1
l//(‘gn)

and last term — 0 as in the proof of the main result.
Ezxample:  Super-Efficiency (Hodges (1953))

Z if|Z] >n VA

- Thi
aZ  otherwise 15

Suppose Zi, ..., Zy, are iid N'(0,1), so I(0) = 1 and let 6, = {

is a “pre-test shrinker” if a < 1.) Now /n(f, — 6p) ~ N(0,v(0)) where v(6) = 1 for 6 & 0 and
v(0) = a? when ¢ = 0. So for a < 1, the CRLB is violated! By Chebyshev if 6 = 0, then for
large n, 6, = aZ, if not, not.

Proof: 16y =0, P(|Z|>e) <Y s0 P(|Z]) >n 14 < 2 = L 050 wpl 0, = aZ.

Remark: Le Cam, Bahadur and others have shown that this has to happen on a set of
Lebesgue measure zero.

Multiparameter Extensions

Theorem:  Let Zi,...,Zy, be iid from {f(z]0y), Pp}.

Assume

(i) Pp are distinct

(ii) P have common support

(iii) 3 ©¢ C O s.t. Oy € O and all 3rd partials exist for 8 € O

(iv) Eg,Vlog f =0 and I;x(6) = Ep, (8%51”850751‘) = —Ep, (%figek log f)

(v) I(0) is positive definite for all § € ©¢y and the vector of “scores” s = Vlog f is linearly
independent



(vi) There exist functions M;;(z) such that, W?ja&k log f‘ < M;ji(z) VO € ©p. and Eg, M;ji(2) <

Q.

Then with probability tending to 1, there exists 0,, solving the likelihood equations, Vol(0|z) =
0 such that || 6, — 6 ||— 0 and \/n(0, — 6p) ~ Np(0,17(6p))

Proof: See Lehmann
Corollary: (One-Steps)  If the previous conditions hold and 6, is v/n consistent for fg, then
O = 0, — [V21(0,)] 7 VI(By)

is asymptotically efficient. . . .
Remark: ~ The alternative, 8,, = 0, + [I(0,)]"'VI(6,) will also work. This is the method-of-
scoring version of the one-step.



