University of Illinois Spring 2017

Econ 574

Department of Economics Roger Koenker

Lecture 9 "Consistency and Asymptotic Efficiency of the MLE"

Ref: Wald (1949), Lehmann §6.2.

We will begin with a very simple special case which illustrates the main line of argument. Let Z_1, \ldots, Z_n be iid from $\{P_{\theta}, f(z|\theta)\}$, where $P_{\theta}(A) = \int_A f(z|\theta) dz$. Assume

- A1. The elements of P_{θ} are distinct,
- A2. The elements of P_{θ} have common support
- A3. The parameter space $\Theta \in \Re$ contains an open interval Θ_0 containing θ_0 the true parameter.

Lemma: Under A1-3 for any fixed $\theta \neq \theta_0$,

$$P_{\theta_0}\{\prod_{i=1}^n f(Z_i|\theta_0) > \prod_{i=1}^n f(Z_i|\theta)\} \to 1 \qquad \text{as } n \to \infty$$

Proof: The event in $\{ \}$ is \Leftrightarrow to

$$\frac{1}{n}\sum \log f(Z_i|\theta)/f(Z_i|\theta_0) < 0$$

By the WLLN the lhs converges to $E_{\theta_0} \log(f/f_0)$. Since $-\log(x)$ is strictly convex

$$E_{\theta_0} \log(f/f_0) < \log(E_{\theta_0}(f/f_0))$$

= $\log(\int f dy)$
= 0

This is the essence of Wald's argument. If the parameter space Θ is finite, then the Lemma implies directly that $\hat{\theta}$ is consistent, since it shows that, eventually, the likelihood is larger at θ_0 than at any other θ .

Theorem: Under A1-3, if Θ is finite, then the mle $\hat{\theta}_n$ exists, is unique with probability tending to 1 and is consistent, i.e., $\hat{\theta} \to \theta_0$.

Proof: Let $\Theta = \{\theta_0, \theta_1, \dots, \theta_k\}$ and E_{in} be the event $\sum \log(f_i/f_0) < 0$. Then since

$$P\{E_{in}\} \to 1 \quad i = 1, \dots, k \quad \Rightarrow P(E_{1n} \cap \dots \cap E_{kn}\} \to 1$$

the result follows. This implication is immediate from Bonferroni's inequality

$$P(\cap E_{in}) \ge 1 - \sum P(E_{in}^c)$$

Bonferroni's Digression Recall that (De Morgan's law) $\cap A_i = (\cup A_i^c)^c$ so that

$$P(\cap A_i) = P(\cup A_i^c)^c = 1 - P(\cup A_i^c) \ge 1 - \sum P(A_i^c).$$

This is usually used to adjust critical values for confidence interval computations: if you have g contrasts and want to do simultaneous confidence intervals then you can use c_{α}^{*} where $\alpha^{*} = \alpha/(2g)$, and α is the desired overall confidence level. There are several variants and strengthenings of the basic Bonferroni inequality. For example one can show that,

$$\sum P(A_i) \le P(\cup A_i) + \sum \sum P(A_i \cap A_j)$$

Without further conditions on f one can't go further, even the uncountable Θ is fraught with danger. Possible escapes

(Wald) (i) *ad hoc* assumptions about
$$\lim f(z|\theta)$$

(Cramer) (ii) differentiability assumptions of f .

we will try to illustrate the latter approach.

Theorem: Under A1-3, if $f(z|\theta)$ is differentiable wrt to θ in Θ_0 with derivative $f'(z|\theta)$, then $wp \to 1$

$$\sum_{i=1}^{n} \frac{f'(z|\theta)}{f(z_i|\theta)} = 0$$

has a root $\hat{\theta}_n$ such that $\hat{\theta}_n \to \theta_0$.

Proof: Choose a such that $(\theta_0 \pm a) \subset \Theta_0$ and set

$$S_n = \{ z | l_n(\theta_0) > l_n(\theta_0 - a) \text{ and } l_n(\theta_0) > l_n(\theta_0 + a) \}$$

where $l_n(\theta) = \sum_{i=1}^n \log f(z_i|\theta)$. By the previous Theorem, $P_{\theta_0}\{S_n\} \to 1$.

For any $z \in S_n$, there exists $\hat{\theta}_n$ such that $\hat{\theta}_n \in (\theta_0 \pm a)$ at which $l(\theta, z)$ has a local max, and therefore $l'(\theta) = 0$ Hence, for any a > 0, but sufficiently small, there exists a sequence $\{\hat{\theta}_n\} = \{\hat{\theta}_n(a)\}$ of roots such that

*
$$P_{\theta_0}\{|\theta_n - \theta_0| < a\} \rightarrow 1$$

It remains to show that sequence doesn't depend on a. For this, let θ_n^* be root closest to θ_0 (which exists because the limit of sequence of roots is a root by continuity of l). Now θ_n^* satisfies (*) but is independent of a. \Box

Remarks: In some problems the likelihood isn't concave so we can't guarantee a unique maximum, and in this case it is sometimes difficult to choose the right root. Often we will see that it is possible to find a root near an initial consistent estimator – this helps. Cauchy likelihood is an interesting example.

Asymptotic Normality of the MLE

Theorem: Let Z_1, \ldots, Z_n be iid from $\{P_{\theta}, f(z|\theta)\}$ and assume:

- (i) Θ is an open interval not necessarily finite.
- (ii) P_{θ} are distinct and have common support
- (iii) $f(z|\theta)$ is thrice differentiable wrt to θ and f'' is continuous wrt θ .
- (iv) $\int f(z|\theta) dz$ is 3 times differentiable under \int .
- (v) $I(\theta) = V(\partial \log f / \partial \theta)$ satisfies $0 < I(\theta) < \infty$.
- (vi) For any $\theta_1 \in \Theta$, there exists c > 0 and M(z) such that

$$\partial^3 \log f(z|\theta) / \partial \theta^3 \le M(z)$$
 for all $z \in Z$ and $\theta \in (\theta_0 \pm c)$

and $E_{\theta_0}M(Z) < \infty$,

Then for any consistent sequence, $\hat{\theta}_n \to \theta_0$, of roots to the likelihood satisfies,

(*)
$$\sqrt{n}(\hat{\theta}_n - \theta_0) \rightsquigarrow \mathcal{N}(0, I(\theta_0)^{-1}),$$

Proof: Let $l(\theta) = \sum \log f(z_i | \theta)$ as above and expand $l'(\hat{\theta}_n)$ about θ_0 for any fixed z,

$$l'(\hat{\theta}_n) = l'(\theta_0) + (\hat{\theta}_n - \theta_0)l''(\theta_0) + \frac{1}{2}(\hat{\theta}_n - \theta_0)^2 l'''(\theta_n^*)$$

where $|\theta_n^* - \theta_0| < |\hat{\theta}_n - \theta_0|$. By hypothesis $l'(\hat{\theta}_n) = 0$ so that

$$\sqrt{n}(\hat{\theta}_n - \theta_0) = \frac{-n^{-1/2}l'(\theta_0)}{n^{-1}l''(\theta_0) + \frac{1}{2}n^{-1}(\hat{\theta}_n - \theta_0)l'''(\theta_n^*)}$$

Consider these terms in turn:

(1)
$$n^{-1/2}l'(\theta_0) \rightsquigarrow \mathcal{N}(0, I(\theta_0))$$

$$n^{-1/2}l'(\theta_0) = \sqrt{n}[n^{-1}\sum_{i=1}^n l'_i - El'_i]$$

$$\equiv \sqrt{n}[n^{-1}\sum_{i=1}^n (X_i - \mu)]$$

where $X_i = \partial \log f(Z_i|\theta_0)/\partial \theta$, $E(X_i) = 0$, and $V(X_i) = I(\theta_0)$ so $n^{-1/2}l'(\theta_0) \rightsquigarrow \mathcal{N}(0, I(\theta))$ by the simplest form of the CLT for iid r.v.'s.

(2) Now consider the first term in the denominator. Set $X_i = \frac{\partial^2}{\partial \theta^2} \log f(Z_i | \theta_0)$ and recall that $EX_i = -I(\theta_0)$, so

$$n^{-1}l''(\theta_0) = n^{-1}\sum_{i=1}^n \left(\frac{f'_i}{f_i}\right)^2 - \frac{f''_i}{f_i}$$
$$= n^{-1}\sum_{i=1}^n X_i$$
$$\to -I(\theta_0)$$

(3) Finally, consider, $n^{-1}(\hat{\theta}_n - \theta_0)^2 l'''(\theta_n^*) \to 0$

$$|n^{-1}l'''(\theta)| = \left| \frac{1}{n} \sum \frac{\partial^3}{\partial \theta^3} \log f(Z_i|\theta_0) \right|$$

$$\leq \frac{1}{n} [M(Z_1) + \ldots + M(Z_n)]$$

$$\to E_{\theta_0} M(Z_1) \quad (\text{ by } (vi))$$

But, by Slutsky, since $\hat{\theta}_n \to \theta_0$ the whole term tends to zero.

Then, putting the pieces back together using Slutsky again we have the result.

Example 1: 1pxf's

Finding the mle for the natural parameter η in a 1pxf involves solving

$$(*) \qquad \sum T(z_i) + nd'_0(\eta) = 0$$

Checking the second order conditions we have

$$\frac{\partial^2 l}{\partial \eta^2} = n d_0''(\eta)$$

but recall that $V(T(z)) = -d_0''(\eta)$ so $d_0''(\eta) < 0$ so the 1pxf likelihood must be globally concave. Note that the 3rd derivative conditions are trivially satisfied since all higher derivatives are independent of z_i . Thus, $wp \to 1$, (*) has a unique root $\hat{\eta}$ which is consistent and asymptotically efficient

$$\sqrt{n}(\hat{\eta} - \eta) \rightsquigarrow \mathcal{N}(0, I(\eta)^{-1}).$$

Example 2: Location Model

Suppose Z_1, \ldots, Z_n come from $f(z - \theta)$ where f is differentiable and f(z) > 0 for all z. Then the likelihood equation is

$$\sum_{i=1}^{n} \frac{f'(z_i - \theta)}{f(z_i - \theta)} = 0$$

If f is strongly unimodal, i.e., f'/f strictly decreasing, i.e., $\log f$ is strictly concave, then the objective function, i.e., log likelihood is strictly concave and therefore has a unique root. The Laplace distribution, or double exponential, is a borderline case. since $f'/f = 1/2sgn(\cdot)$ which is "just barely monotone."

Example 3: Z_i iid $U[0, \theta]$

Here none of the theorems apply. What about the mle? Recall that the MLE is $\hat{\theta}_n = Z_{(n)}$. Suppose for convenience $\theta_0 = 1$.

$$P(Z_{(n)} < z) = \begin{cases} z^n & \text{for } z \in [0, 1] \\ 0 & z < 0 \\ 1 & z > 1 \end{cases}$$

Now consider transformed $Z_{(n)}$, with $Y_n = (1 - Z_{(n)})/b_n$ so $Z_{(n)} = 1 - b_n Y_n$ so

$$P(Y_n < y) = P((1 - Z_{(n)})/b_n < y)$$

= $P(1 - b_n y < Z_{(n)})$
= $\begin{cases} 1 - (1 - b_n y)^n & y \in (0, 1/b_n) \\ 0 & y < 0 \\ 1 & y > 1/b_n \end{cases}$

Now choose b_n to stabilize $P(Y_n < y)$. Note if $b_n = b_0$, a constant $(1 - b_0 y)^n \to 0$ If $b_n = n^{-2}$, then $(1 - y/n^2)^n \to 1$ However, $b_n = n^{-1}$ we have

$$(1 - y/n)^n \to e^{-y}$$

so, as baby bear says, this rate is "just right" and the normalized version of the MLE converges to the standard exponential distribution,

$$P(n(1 - Z_{(n)}) < z) \to e^{-z}$$

or

$$n(1 - Z_{(n)}) \rightsquigarrow E(0, 1)$$

More generally we have if $Z \in U[0, \theta_0]$. then

$$n(\theta_0 - Z_{(n)}) \rightsquigarrow E(0, \theta_0)$$

It is interesting to compare the MLE $\hat{\theta}_n$ with the estimator based on the sample mean. If $Z \sim U[0, \theta]$, then $EZ = \theta_0/2$ and $VZ = \theta^2/12$ so $2\bar{Z} \to \theta_0$ and therefore

$$\sqrt{n}(2\bar{Z}-\theta_0) \to \mathcal{N}(0,\theta_0^2/3).$$

Thus $\hat{\theta}_n = 2\bar{Z}$ is a consistent estimator of the parameter θ , but it converges only at rate $1/\sqrt{n}$, while the MLE converges at the rate 1/n, so the mean-based estimator has zero asymptotic efficiency in this case.

We now turn to the problem posed by multiple roots of the likelihood. The first result gives a simple "solution" to this problem if we have a consistent estimator available.

Theorem: (One-Steps) Given the assumptions of the previous theorem, suppose that $\hat{\theta}_n$ is any \sqrt{n} consistent estimator of θ_0 , i.e., for any ε there exists M such that

$$P(\sqrt{n}|\tilde{\theta}_n - \theta_0| \ge M] < \varepsilon.$$

Then $\hat{\theta}_n = \tilde{\theta}_n - l'(\tilde{\theta}_n)/l''(\tilde{\theta}_n)$ is asymptotically efficient, i.e., $\sqrt{n}(\hat{\theta}_n - \theta_0) \rightsquigarrow \mathcal{N}(0, I(\theta_0)^{-1}).$

Proof: (Heuristics) The name comes from the fact that $\hat{\theta}_n$ is one Gauss-Newton step toward the mle from $\hat{\theta}_n$. Suppose l were quadratic, then

$$l(\theta) = l(\tilde{\theta}) + (\theta - \tilde{\theta})l'(\tilde{\theta}) + \frac{1}{2}(\theta - \tilde{\theta})^2 l''(\tilde{\theta})$$

would hold *exactly*. Then if we wanted to maximize $l(\theta)$, we'd let $l'(\theta) = 0$ or

$$l'(\tilde{\theta}) = -(\theta - \tilde{\theta})l''(\tilde{\theta})$$
$$\hat{\theta} = \tilde{\theta} - l'(\tilde{\theta})/l''(\tilde{\theta})$$

so, in effect, we are behaving as if the quadratic approximator is valid near $\hat{\theta}_n$. More formally, expand as in the main theorem and substitute in definition of $\hat{\theta}_n$,

$$l'(\tilde{\theta}_{n}) = l'(\theta_{0}) + (\tilde{\theta}_{n} - \theta_{0})l''(\theta_{0}) + \frac{1}{2}(\theta_{n} - \theta_{0})^{2}l'''(\theta_{n}^{*})$$

$$\sqrt{n}(\hat{\theta}_{n} - \theta_{0}) = -\frac{n^{-1/2}l'(\theta_{0})}{n^{-1}l''(\tilde{\theta}_{n})} + \sqrt{n}(\tilde{\theta}_{n} - \theta_{0})\left[1 - \frac{l''(\theta_{0})}{l''(\tilde{\theta}_{n})} - \frac{1}{2}(\tilde{\theta}_{n} - \theta_{0})\frac{l'''(\theta_{n}^{*})}{l''(\tilde{\theta}_{n})}\right]$$

first term as above second term has leading term $O_p(1)$ and

or

$$\frac{l''(\theta_0)}{l''(\tilde{\theta}_n)} \to 1$$

and last term $\rightarrow 0$ as in the proof of the main result.

Example: Super-Efficiency (Hodges (1953))

Suppose
$$Z_1, \ldots, Z_n$$
 are iid $\mathcal{N}(\theta, 1)$, so $I(\theta) = 1$ and let $\hat{\theta}_n = \begin{cases} \bar{Z} & \text{if } |\bar{Z}| \ge n^{-1/4} \\ a\bar{Z} & \text{otherwise} \end{cases}$ This

is a "pre-test shrinker" if a < 1.) Now $\sqrt{n}(\hat{\theta}_n - \theta_0) \rightsquigarrow \mathcal{N}(0, v(\theta))$ where $v(\theta) = 1$ for $\theta \pm 0$ and $v(\theta) = a^2$ when $\theta = 0$. So for a < 1, the CRLB is violated! By Chebyshev if $\theta = 0$, then for large n, $\hat{\theta}_n = a\bar{Z}$, if not, not.

Proof: If
$$\theta_0 = 0$$
, $P(|\bar{Z}| > \varepsilon) \le \frac{V(\bar{Z})}{\varepsilon^2}$ so $P(|\bar{Z}|) > n^{-1/4} \le \frac{1/n}{1/\sqrt{n}} = \frac{1}{\sqrt{n}} \to 0$ so wp1 $\hat{\theta}_n = a\bar{Z}$.

Remark: Le Cam, Bahadur and others have shown that this has to happen on a set of Lebesgue measure zero.

Multiparameter Extensions

Theorem: Let Z_1, \ldots, Z_n be iid from $\{f(z|\theta_0), P_\theta\}$.

Assume

(i) P_{θ} are distinct

- (ii) P_{θ} have common support
- (iii) $\exists \Theta_0 \subset \Theta$ s.t. $\theta_0 \in \Theta_0$ and all 3rd partials exist for $\theta \in \Theta_0$

(iv)
$$E_{\theta_0} \nabla \log f = 0$$
 and $I_{jk}(\theta_0) = E_{\theta_0} \left(\frac{\partial \log f}{\partial \theta_j} \frac{\partial \log f}{\partial \theta_k} \right) = -E_{\theta_0} \left(\frac{\partial^2}{\partial \theta_j \partial \theta_k} \log f \right)$

(v) $I(\theta)$ is positive definite for all $\theta \in \Theta_0$ and the vector of "scores" $s = \nabla \log f$ is linearly independent

(vi) There exist functions $M_{ijk}(z)$ such that, $\left|\frac{\partial}{\partial \theta_i \partial \theta_j \partial \theta_k} \log f\right| \le M_{ijk}(z) \quad \forall \theta \in \Theta_0$. and $E_{\theta_0} M_{ijk}(z) < \infty$.

Then with probability tending to 1, there exists $\hat{\theta}_n$ solving the likelihood equations, $\nabla_{\theta} l(\theta|z) = 0$ such that $\|\hat{\theta}_n - \theta_0\| \to 0$ and $\sqrt{n}(\hat{\theta}_n - \theta_0) \rightsquigarrow \mathcal{N}_p(0, I^{-1}(\theta_0))$

Proof: See Lehmann

Corollary: (One-Steps) If the previous conditions hold and $\tilde{\theta}_n$ is \sqrt{n} consistent for θ_0 , then

$$\hat{\theta}_n = \tilde{\theta}_n - [\nabla^2 l(\tilde{\theta}_n)]^{-1} \nabla l(\tilde{\theta}_n)$$

is asymptotically efficient.

Remark: The alternative, $\hat{\theta}_n = \tilde{\theta}_n + [I(\tilde{\theta}_n)]^{-1} \nabla l(\tilde{\theta}_n)$ will also work. This is the method-of-scoring version of the one-step.