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Lecture 4
“LLN’s, CLT’s, and the LIL”

“Ab uno disce omnes - not!”*

Today we will study the asymptotic behavior of sample means. We will focus on independent but not
necessarily identically distributed observations. Results will come in two flavors:

LLN’s Laws of Large Numbers µ̂→ µ
CLT’s Central Limit Theorems

√
n(µ̂− µ) ; N (0, σ2).

It seems that these results are very restrictive since they concern sample means, but we will eventually
see that this gets us a long way.

(1) LLN’s The simplest form of LLN and the only one we will prove is
WLLN:: (Chebyshev) Let Z1, . . . be independent r.v.’s with means µ1, . . . and variances
σ2

1 . . . . If n−2
∑
σ2
i → 0 as n→∞, then Z̄ = µ̂→ µ̄.

Pf::

P [|Z̄ − µ̄| ≥ ε] ≤ E(Z̄ − µ̄)2

ε2
=

1
n2

∑
σ2
i

ε2
→ 0 2

Remark:: If σi = σ2, then 1
n2

∑
σ2
i = σ2/n and Chebyshev’s inequality suggests that the

lhs probability → 0 at rate 1/n. So in this case we could say Z̄ − µ = Op(1/n) rather than
the weaker Z̄ − µ = op(1). A stronger result is the following:

SLLN: (Kolmogorov) For {Zi, µi, σ2
i } as above, if

∑
σ2
i /i

2 <∞, then Z̄ → µ̄ a.s.
Pf:: See Breiman.
Remark:: If σi = σ2

0 , we have
∑
σ2
i /i

2 = σ2
0

∑
i−2 = σ2

0π
2/6. However, σ0 < ∞ is really

stronger than we need, in the iid case as the next result shows.
Thm:: (Kolmogorov) For {Zi} iid, iff EZ1 = µ, then Z̄ → µ a.s.
Pf:: (Somewhat sketchy à la Whittle, p. 127, of the “in probability” version of the “if” part,

see Breiman for the full proof.)
Let φ(t) be the cf of Z which since Z has a first moment has an expansion of the form

φZ1(t) = 1 + iµt+ o(t) = eiµt+o(t)

and thus (recall that lim(1 + a/n)n = ea),

φZ̄(t) = [φ(t/n)]n = eiµt+no(t/n) → eiµt 2

An important special case, or application if you will, of the SLLN involves taking

Zi = I[Xi,∞)(x)

for iid. r.v.’s Xi ∼ F and fixed x. Since

EZi = P (Xi ≤ x) = F (x)

we can infer immediately that

Fn(x) =
1

n

∑
I[Xi,∞)(x)→ F (x) a.s.

This can be strengthened in the following way
Thm:: (Glivenko-Cantelli) P (supx |Fn(x)− F (x)| → 0) = 1.

*The Latin phrase is, I believe, from Virgil’s Aenid and roughly translated means “from one example, all is revealed” so
it is a phrase which succinctly captures the antithesis of statistical thinking.
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Pf:: (á la Ferguson) Let ε > 0, and find an integer k > 1/ε and numbers −∞ = x0 <
x1 ≤ · · · ≤ xk−1 < xk =∞ such that

F (x−j ) ≤ j/k ≤ F (xj) j = 1, . . . , k − 1.

[Interpret F (x−) = P (X < x)]. Note that if xj−1 < xj , then F (x−j ) − F (xj−1) ≤ ε. From
the SLLN,

Fn(xj)→ F (xj) a.s.

and

Fn(x−j )→ F (x−j ) a.s.

for j = 1, . . . , k − 1. Hence,

∆n = max{|Fn(xj)− F (xj)|, |Fn(x−j )− F (x−j )|, j = 1, . . . , k − 1} → 0

Now let x be arbitrary and find j such that xj−1 < x ≤ xj . Then

Fn(x)− F (x) ≤ Fn(x−j )− F (xj−1) ≤ Fn(x−j )− F (x−j ) + ε

and

Fn(x)− F (x) ≥ Fn(xj−1)− F (x−j ) ≥ Fn(xj−1)− F (xj−1)− ε.

Thus

sup
x
|Fx(x)− F (x)| ≤ ∆n + ε→ ε a.s.

And since this holds for all ε > 0 the result follows. 2

Vapnik (1999) calls this result “the most important result in the foundation of statistics.”

(2) CLT’s

In this section we would like to refine the analysis of the LLN’s and explore the behavior of
“normalized” sums of independent r.v.’s. This is particularly important for the asymptotic theory
of testing. It is not good enough to have convergence results we would like to know the limiting
distributions of possible test statistics, if we are to compute critical values.

Some preliminary results

Consider first the following very simple property of the normal (Gaussian) distribution. Sup-
pose Z1, . . . , Zn . . . are iid N (0, 1), or Z ∼ N (0, In), we know that α′Z ∼ N (0, α′α) so, e.g., if
we take α = n−1/21n, we have

n−1/2(Z1 + · · ·+ Zn) ∼ N (0, 1)

or
√
nZ̄ ∼ N (0, 1)

This result is exact. What happens when the original Z’s aren’t quite normal?
Thm:: Suppose X1, . . . are iid r.v.’s with EX1 = µ V X1 = σ2, then

√
n(X̄n − µ)/σ ;

N (0, 1).
Pf:: Existence of moments µ, σ2 implies the moment expansion of the cf of X1

φX1(t) = exp{iµt− 1

2
σ2t2 + o(t2)}.
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Note that this is the cumulant version of the moment expansion from L1. Thus Sn =
X1 + · · ·+Xn has φSn

(t) = φnX1
(t) and Un =

√
n(X̄n − µ)/σ =

√
n(Sn/n− µ)/σ has cf,

φUn(t) = EeitUn

= φnX1

(
t

σ
√
n

)
exp{− iµt

√
n

σ
}

=

[
exp

{
iµt

σ
√
n
−

1
2σ

2t2

σ2n
+ o

(
t2

σ2n

)}]n
exp{− iµt

√
n

σ
}

= exp

{
−1

2
t2 + no(t2/n)

}
→ exp{−1

2
t2}

And the result follows by the uniqueness of the cf.

Why normal? (cf Breiman § 9.)
If
√
n(X̄n − µ) ; X, what must X look like? Consider

Z2n =
X1 + · · ·+Xn +Xn+1 + . . . X2n√

2n

Clearly Z2n ; X, but

Z2n =
X1 + · · ·+Xn√

2n
+
Xn+1 + . . . X2n√

2n
= Zan + Zbn

where Zan and Zbn ; X/
√

2. This is a very special property: sums of independent r.v.’s have
the same df as the summands. A general characterization of such distinctions would require us
to delve into stable laws, instead we simply give the following result.2

Thm:: If X1, X2 and X = (X1+X2)/
√

2 all have the same df with X1 and X2 independent
and EX2 <∞, then X is N (0, σ2).

Pf:: Iterating the hypothesis m times we have

X
D
=
X1 + · · ·+Xn√

n
for n = 2m

But by the previous result the rhs tends to N (0, σ2).

Extending our basic iid result to more general cases is the subject of a vast literature. We
will mention some results for the inid case leaving the dependent case for later.
The most straightforward result is

Thm:: Lyapunov (1901). Let X1, . . . be independent with EXi = 0, EX2
i = σ2

i <
∞, E|Xi|3 <∞ and S2

n =
∑
σ2
i . If

limS−3
n

n∑
i=1

E|Xi|3 = 0,

then

S−1
n

∑
Xi ; N (0, 1).

2A nice mechanical exposition of this idea was “invented” by Galton(1877), cf. the dicussion of Stigler (1989, “The
Invention of Correlation,” Stat. Sci). Galton imagined making a two-level version of his quincunx: you would pour balls

in the top as usual but at the first level you would get a bunch of little Gaussian hills, and then you would release these

hills letting the balls pass through another set of pins. The accumulation of balls at the bottom would again look normal,
showing that the resulting process was equivalent to not interupting the balls in the first place.
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Pf:: Breiman (p. 187) calls this proof “very humdrum using cfs,” and does it in about
one page. He uses the moment expansion argument, as above.
A considerably deeper result is the following due to Lindeberg and Feller.

Thm:: As in the previous theorem, consider X1, . . . with µi, σi, S
2
n. Suppose that

σ2
n

S2
n

→ 0 with Sn →∞ as n→∞

then, S−1
n

∑
(Xi − µi) ; N (0, 1) iff

S−2
n

n∑
i=1

∫
|t−µi|>εSn

(t− µi)2dFi(t)→ 0

for each ε > 0. The latter condition is usually called the Lindeberg Condition.
Proof:: (Delicate, Chung is quite good on this.)
Remarks:: The great thing is the iff. The Lindeberg Condition is essentially needed to rule

out the possibility that any one of the summands has variability that dominates the others.
We will now give a number of examples from econometrics to illustrate this result.

Example Regression à la OLS
Consider the simplest through-the-origin model

yi = Xiβ + ui ui ∼ iid F,

and the OLS estimator,

β̂ − β = (x′x)−1x′u

Let zi = xiui so Ezi = 0 and V zi = x2
iσ

2 and

S2
n = σ2

∑
x2
i ≡ σ2Qn

Consider

S−2
n

∑
E[z2

i I(|zi| ≥ εSn)] = S−2
n

∑
x2
iEu

2
i I(|ui| ≥ ε|xi|−1Sn)

Thus, if maxxi/Sn → 0, we have satisfied the Lindeberg Condition. We now provide some details

of this argument, to keep things a bit simpler we will assume that Eu2+δ
i < M. Note that∫

u2I(|u| ≥ η)dF ≤
∫
u2(|u|/η)δI(|u|) ≥ η)dF

= η−δ
∫
u2+δI(|u|) ≥ η)dF

≤ η−δ
∫
u2+δdF

≤ η−δM

So
S−2
n

∑
x2
iEu

2
i I(|ui| ≥ ηi) ≤ S−2

n

∑
x2
i η
−δ
i M

where ηi = Sn/|xi| so η−δi = (|xi|/Sn)δ so max{|xi|/Sn} → 0 implies the rhs → 0.

There is usually some tradeoff between F -conditions and X-conditions. Here we are trying to
be general about X and the 2 + δ-moment is stronger than absolutely necessary on F . Now we
have

(i) Qn →∞
(ii) max |xi|/Qn → 0

(iii) Eu2+δ
i < M ∀i

If we assume in addition,

(iv) n−1Qn → Q0
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which implies
√
n(β̂ − β) = (x′x/n)−1n−1/2x′u

The Lindeberg-Feller CLT implies n−1/2(x′u) ; N (0, σ2(x′x/n)) and by Slutsky it follows that
√
n(β̂ − β) ; N (0, σ2(x′x/n)−1)

; N (0, σ2Q−1
0 ).

Suppose we replace (iv) with an alternative specification in which Qn grows more rapidly than
n. A simple example is the following important example of a linear trend

xi = i⇒
n∑
i=1

x2
i = 1 + 4 + 9 + · · ·+ n2 =

n(n+ 1)(2n+ 1)

6

= O(n3)

Note that

maxx2
i /Qn = n2 ·O(n−3) = O(n−1)→ 0.

so there is hope in the sense that we do have a Lindeberg Condition. But clearly normalizing by√
n won’t work since

V ar(
1√
n

∑
xiui) = σ2Qn = O(n2)

and

n−1
∑

x2
i = Qn = O(n2)

so
√
n(β̂ − β) ; N (0, σ2Q−1

n )→ 0

But we can replace
√
n by n3/2 to obtain

n3/2(β̂ − β) =

(
1

n3

∑
x2
i

)−1

n−3/2
∑

xiui

now the first factor tends to 3 and the second factor ; N (0, σ2/3) so by Slutsky,

n3/2(β̂ − β) ; N (0, 3σ2).

Two other semi-pathological examples
(1.): Consider xi = 1/

√
i so

∑
x2
i =

∑
1/i ≈ log n then

maxxi∑
x2
i

=
1

log n
→ 0

so here
√

log n(β̂ − β) ; N (0, σ2). This is very slow convergence. What is the intuition
here? Ulike the previous case of the linear trend where new observations are increasingly
informative about the trend parameter, β, here new observations are less informative as we
go further out in the sequence, but just barely informative enough so that the Lindeberg
condition is satisfied and thus we get limiting normality.

(2.): Now consider xi = 1/i so
∑
x2
i =

∑
1/i2 = π2

6 so
∑
x2
i 6→ ∞ and

max |xi|/
∑

x2
i = 6/π2 6→ 0

so now the Lindeberg condition fails to hold and consequently we have no CLT and therefore

no limiting normality for β̂. In this case the xi’s go to 0 too quickly, and x1 exerts an effect
which is never dominated by the remaining elements of the sequence.
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CLTs for Dependent Sequences
In dependent cases the CLT situation becomes much more complicated and there are lots of

special circumstances. Of course if there isn’t too much dependence then we would expect that
we would still see CLT behavior. The problem is how to make this precise. One way is α-mixing.

Given a sequence X1, X2, · · · and sets A ∈ σ(X1, · · · , Xk) and B ∈ σ(Xk+n, Xk+n+1, · · · ) for
k ≥ 1 and n ≥ 1, then if there exists a sequence of real numbers αn → 0 such that

|P (A ∩B)− P (A)P (B)| ≤ αn

then the sequence {Xn} is α- mixing. If αn = 0 for n > m then the sequence is said to be
m-dependent, and this is an important special case.

Recall that if the distribution of the random vector (Xn, Xn+1, · · ·Xn+j) doesn’t depend upon
n, then it is said to be stationary. A proof of the following result is given in Billingsley (Thm
27.5, p 316, ed I).

CLT for α-mixing sequences Suppose X1, X2, · · · is stationary and α-mixing with αn = O(n−5),
EXn = 0 and EX12

n <∞. Set Sn = X1 + · · ·+Xn, if

n−1V (Sn)→ σ2 ≡ EX2
1 +

∞∑
k=1

EX1Xk+1

converges absolutely with σ2 > 0, then Sn/(σ
√
n) ; N (0, 1).

In many dependent situations, asymptotics boil down to “finding the martingale” and then
applying a martingale CLT. What’s a martingale?

Definition Let X1, X2, · · · be a squence of random variables on (Ω,F ,P) and let F1,F2, · · · be a
sequence of σ-fields in F then the sequence {(Xn,Fn) : n = 1, 2, · · · } is a martingale if:
(a) Fn ⊂ Fn−1

(b) Xn is measureable Fn
(c) E|Xn| <∞
(d) E(Xn+1|Fn) = Xn with probability one.

Gambling is the usual example with Fn representing (wealth) information at step n. The
following result generalizes the Lindeberg-Feller CLT to an important class of dependent settings.
We can decompose a martingale, {Xn} as

Xn = X0 +

n∑
j=1

ξi

where ξj = Xj − Xj−1 is called a martigale difference sequence and has the property that
E(Ξn+1|Fn) = 0. Thus, EXn = EX0 and provided that EX2

n <∞, the ξj ’s are square integrable
and uncorrelated, so

EX2
n = EX2

0 +
∑

EX2
j .

To see this, assume wlog that X0 = 0 and consider for j ≤ k ≤ n,

E(ξjξk+1 = EE(ξjξk+1|Fk)

= EξjE(ξk+1|Fk)

= 0
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so increments are uncorrelated and we can write,

EX2
n = E(

∑
ξj)

2

=
∑∑

Eξjξk

=
∑

Eξ2
j + 2

∑
j 6=k

ξjξk

=
∑

Eξ2
j .

Thus we see that the variances of the martingale increments are summable. The following gen-
eralization of the Lindeberg-Feller theorem is usually attributed to Paul Levy.

Martingale CLT Suppose that for each n, Xn1, Xn2, · · · is a martingale with respect to the
filtration Fn1,Fn2, · · · Define ξnk = Xnk −Xn,k−1, and suppose that σ2

nk = E(ξ2
nk|Fn,k−1) <∞.

If
∑∞
k=1 σ

2
nk → σ2 and for every ε > 0,

∞∑
k=1

Eξ2
nkI(|ξnk|≥ε) → 0

then Sn =
∑∞
k=1 ξnk ; N (0, σ2).

(3) LIL’s

Another remarkable class of results are the Laws of the Iterated Logarithm. Here is the most
basic version.

Thm:: Let Y1, Y2, . . . be iid r.v.s with mean 0 and variance 1, then

lim
n→∞

sup
Y1 + . . .+ Yn√
n log log n

=
√

2 a.s.

Rem:: Since we know that Sn/
√
n ; N (0, 1) under these conditions it seems that the extra

factor
√

log log n is just what is needed to keep Sn/
√
n log log n within a compact interval

eventually.
Slutsky’s Lemma implies Zn = Sn/

√
n log log n → 0 so Zn is eventually in [−ε, ε] for any

ε > 0. But LIL says that Zn is in (
√

2± ε). What gives? The fact is that both are possible.
Implications:: Suppose EYi = µ and V Yi = 1, then

P (Ȳn − 2/
√
n ≤ µ ≤ Ȳn + 2/

√
n)→ Φ(2)− Φ(−2) ∼= .95

Suppose µ = 0, then µ = 0 is contained in the interval iff

|Zn| ≤
2√

n log log n

The LIL implies that Zn ∈ (
√

2− ε,
√

2 + ε) infinitely often. Since 2/
√

log log n is near zero
we can be sure that µ = 0 is outside the interval infinitely often.
This is clarified by thinking of a large number of independent experiments each of which
compute a sequence of CI’s as n → ∞. At each n, 5% of them will exclude the true value
µ = 0, but as n→∞ we may expect that this is not the same 5%, this is what is predicted
by the LIL. Think of many econometricians making intervals and as n → ∞. There would
always be 5% who had a bad interval, but the composition of this 5% would fluctuate.
Note also that the whole paradox (if it really is a paradox) is based on the idea that

2/
√

log log n is close to zero and it is nonsensical if this quantity is larger than
√

2. Thus,
for example for 2/

√
log log n < 1 requires that n be at least 1023.

How good is the CLT?
As a final result for this lecture we offer a classical result on the accuracy of the CLT.
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Thm:: (Berry-Esséen) Let {Xi} be iid r.v.’s with mean µ and variance σ2 > 0, then

sup
t
|Fn(t)− Φ(t)| ≤ 33

4

E|X − µ|3

σ3
√
n

where Fn(t) = P (Zn ≤ t) and

Zn =
n−1/2

∑
(Xi − µ)

σ
.

Remark:: This can be extended to nid cases painfully. See Serfling for references. Note that
the accuracy of the approximation is O(1/

√
n) but the crucial, and remarkable, fact is the

nature of the constant, which has been variously improved since the work of Berry and
Esséen in the 1940’s.
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