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Economics 536
Lecture 23

Introduction to Non-Parametrics

1. Introduction

In this lecture I would like to introduce some basic ideas about non-
parametrics and also to reenforce some principal themes of the course. There
are several meanings of “non-parametrics” in econometrics and statistics, I
will use it to refer to function estimation. Instead of estimating models
characterized by a finite dimensional parameter, e.g.

E(y|x) = β0 + β1x

E(y|x) = β0 + β1x+ β2x
2

we are going to consider models with (in principle) an infinite dimensional
parameter. Fear not, though, most of our effort will be devoted to making
this look just like the finite dimensional case.

2. Splines, Sieves and Basis Expansion

Suppose we would like to have a somewhat more flexible specification of
the effect of a covariate than is afforded by the simple quadratic specifica-
tions that we have discussed thus far. There are many options that can be
formulated in the following way:

E(y|x) =

p∑
i=0

βiϕi(x)

where the ϕi denote known functions that represent, or span, the class of
plausible candidate conditional mean functions. The traditional choice of
monomials, ϕi(x) = xi turns out to be quite unsatisfactory beyond the con-
ventional quadratic, but there are many other alternatives. To illustrate this
consider fitting the scatter plot in the next figure with global polynomials
of various orders. As illustrated, the global nature of the polynomial basis
makes it very difficult to control fit, and small changes in the data in one
region can exert a deleterious effect on the fit far away. Another classical
choice is the Fourier expansion in which E(y|x) is expressed as a sum of sine
and cosine terms with increasing frequency, but this is most advantageous
in special periodic, time series situations. There are many other orthogonal
systems of functions that can be used: representations like this are often
called sieves since higher order terms capture finer structure of the function.
A leading example of this are splines.
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Figure 1. Polynomial Regression: The figure illustrates an
example of global polynomial fitting. This is generally a bad
idea since global polynomials are sensitive to perturbations of
the data throughout the domain of x. This is especially true
in the extremes of this domain. Local support as exemplified
by the spline bases described below are much better in this
respect.

2.1. Splines: A good way to generate flexible univariate functions is to
consider piecewise polynomials. The simplest examples are linear splines.
Denote the ”positive part” function, x+ = max{0, x} and consider functions
represented as,

g(x) = β0 +

p∑
i=1

βi(x− αi)+

where the αi’s denote fixed scalar values called knots, at which the function is
allowed to bend. Between these knots the function is linear; it is continuous
with piecewise constant derivative. When there are only two segments we
have the socalled “broken stick” model illustrated in the left panel of Figure
1. While in the right panel we see that considerably more flexibility is
possible when we introduce more knots. The fitted functions are simply
linear combinations of the functions depicted in the lower panel, so it is
natural to think of the collection of these functions as a linear vector space
with these basis functions. Least squares fitting is always trying to find the
element of this space that is closest to the observed response vector in the
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Figure 2. Linear Splines: The figure illustrates two exam-
ples of linear spline fitting. On the left we have a simple
two segment example, on the right one sees 7 distinct seg-
ments. The underlying basis functions are shown below the
respective scatterplots.

sense of solving,
n∑
i=1

(yi − g(xi;β))2.

Piecewise linear functions are simple and easy to interpret, but sometimes
sharp kinks are undesirable. Piecewise cubic polynomials are often used as
an alternative. In Figure 2 we depict basis functions, or B-splines, for a
class of piecewise cubic functions with knots at the points indicated by
points plotted on the y = 0 line. For cubic splines, not only do we have
continuity of the function, but also of its first two derivatives. At the knots
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Figure 3. This figure illustrates some typical cubic B-spline
basis functions. They are evaluated on an equally spaced grid
from 0 to 10, interior knots are located at 2,5,7.

the third derivative is free to jump. This figure can be reproduced in R with
the commands:

pdf("bspline.pdf",horizontal=FALSE,height = 5, width=6.5)

library(splines)

u <- 1:1000/100

matplot(u,bs(u,knots=c(2,5,7)),type="l")

points(c(2,5,7),rep(0,3))

dev.off()

A crucial specification decision for spline models is obviously the choice of
the knot locations. Sometimes this is dictated by detailed knowledge of the
functions to be fitted, but more frequently such knowledge is lacking and
one has to rely on guesswork. Fortunately, it is typically the case that the
fitted functions are not highly sensitive to the choice of knots. In the next
subsection I describe methods that intentionally select too many knots and
rely on “shrinkage” to control the variablity of the fitting.

We have focused thus far on what are sometimes called “scatterplot
smoothers,” that is methods for fitting a function to bivariate scatter plots.
What if there is more than one covariate? A general answer to this question
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is beyond the scope of this lecture, but a simple strategy can be described
for some situations. If we are willing to assume that covariate effects are
additive, then we can fit models of the form,

E(y|x) =

p∑
i=1

gi(xi)

where each component gi takes the form of a spline. Or one can also fit
partially linear models of the form,

E(y|x) = x>β + g(z)

where some covariates enter in a conventional linear fashion, and one or
more enter as spline expansions. And finally as we have seen in PS 5,
we can interact terms to obtain spline expansions that depend on discrete
covariates, or spline expansions of interacted continuous variables.

3. Shrinkage and Bayesian Regression

One theme of the course has been the trade-off between bias and variance
in model selection problems: too simple a model risks serious bias that
may distort policy conclusions of the model, too complicated a model risks
obscuring the important effects in a cloud of uncertainty. Until now we
have tried to balance these risks by selecting a model that represents a
compromise between our objectives. This requires a slightly schizophrenic
viewpoint. On one hand we appear to believe that there are many possible
models for our problem, but in the end only one will be taken seriously.
(This is rationalized by Schwarz’s 0-1 loss function, but often this all or
nothing view of models isn’t appropriate.)

In this lecture we will consider a new approach to reaching a compromise
between simple and complex models. We will begin with a brief exposition
of Bayesian methods for linear regression, in non-Bayesian statistical circles
these methods are sometimes referred to as “shrinkage methods,” or Stein-
rule methods. After briefly discussing some connections to random effects
models for panel data we will then consider non-parametric regression.

3.1. Bayesian Regression. Consider (once more) the linear model,

y = Xβ + u

If we assume (as usual) that u ∼ N (0, σ2I), then we have likelihood,

L(b) = (2π)−n/2σ−n exp{− 1

2σ2
(β̂ − b)′X ′X(β̂ − b)}

Suppose that we have a prior opinion that β ∼ N (β0,Ω), i.e. that β has
density

π(b) = (2π)−p/2|Ω|−1/2 exp{−1

2
(b− β0)′Ω−1(b− β0)}
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Recall that Bayes rule says that we should update our prior opinion about
β, to obtain,

p(b) =
L(b) · π(b)∫
L(b)π(b)db

.

Focusing on the exp{·} in the numerator we obtain, after some algebra,

p(b) = κ exp{1

2
(b− β̃)′(σ−2X ′X + Ω−1)(b− β̃)}

where
β̃ = (σ−2(X ′X) + Ω−1)−1(σ−2(X ′X)β̂ + Ω−1β0)

The latter formula is yet another application of our general strategy for
combining two estimates: we have β̂ and β0 and they have covariance ma-
trices σ2(X ′X)−1 and Ω respectively and they are combined accordingly –
provided the normality assumptions are reasonable.

Some special cases to consider:

(1) When σ2 → 0 then the likelihood dominates the prior.
(2) When σ2 →∞ then the prior dominates L.
(3) As n→∞, typically we assume

n−1X ′X → D (positive definite)

so σ−2(X ′X)→ nσ−2D and the factor n causes the L to dominate.
(4) Suppose

Ω =

[
w0Ip 0

0 w1Iq

]
then by varying w’s we get some interesting cases. E.G. w0 = ∞
would express the view that we were clueless about the first p ele-
ments, but we might still want to shrink the last q elements towards
their prior mean.

Some Practicalities
If we diagonalize Ω−1 = Q′Q, then

λQβ ∼ N (λQβ0, λ
2QΩQ′) ∼ N (Qβ0, λ

2I)

and we can now write the model augmented by the prior information as(
y

λQβ0

)
=

(
X
λQ

)
β

+

(
u
v

)
where the vector (u, v)′ ∼ N (0, Ω̃) where

Ω̃ =

[
σ2I 0
0 λ2I

]
.

and we can “run” this regression to get β̃ or “run” several of these regressions
to get the whole “decolletage”, β̃(λ).

A special case is Ω = I so Q = I; this is often called ridge regression. All
coefficients are shrunken toward zero.
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Figure 4. Bayesian Regression: Contours of the likelihood
and prior are illustrated by the two families of concentric
ellipses. The locus of tangencies between the contours of the
prior and the contours of the likelihood represent a shrinkage
path that connects the mle and the prior mean. Each point
on the path can be interpreted as representing an intensity
of belief in the prior.

3.2. Panel Data. Consider the panel data model of Lecture 13

y = Xβ + Zα+ u

where Z is a matrix of indicator variables representing the fixed effects.
Suppose u ∼ N (0, R) and α ∼ N (0, Q) then treating α as random we
obtain,

β̂ = (X ′(R+ ZQZ ′)−1X)−1X ′(R+ ZQZ ′)−1y
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Why? Hint: Let v = Zα + u, and show Evv′ = R + ZQZ ′. The following
result connects this estimator to the earlier Bayesian shrinkage ideas.

Thm β̂ solves min(α,β) ‖ y −Xβ − Zα ‖2R−1 + ‖ α ‖2
Q−1 .

Pf. Differentiating we have the normal equations

X ′R−1Xβ̂ +X ′R−1α̂ = X ′R−1y

Z ′R−1Xβ̂ + (Z ′R−1Z +Q−1)α̂ = Z ′R−1y

Now solve for α̂ in the first equation substitute into the second and then
solve for β̂ to get

β̂ = (X ′Ω−1X)−1X ′Ω−1y

where Ω−1 = R−1 − R−1Z(Z ′R−1Z +Q−1)−1Z ′R−1. The result follows by
verifying that Ω = R+ ZQZ ′. �

This result has a long history. Goldberger (1962) introduced the phase
best linear unbiased predictor, now sometimes abbreviated BLUP to refer
to it. From our current viewpoint the interesting feature of β̂ is that it
shows that the random effects (GLS) estimator we have already studied
can be viewed as a Bayesian estimator in which we estimate fixed effects,
but shrink them toward a common value of 0. Again we can represent the
“prior” term ‖ α ‖2

R−1 as a data augmentation.

4. Density Estimation

If we have a random sample X1, . . . , Xn from a distribution F , with a
smooth density f = F ′ we might consider maximizing the log likelihood,

max
f

∑
log f(Xi)

subject to the constraints that f(x) ≥ 0 and
∫
f(x)dx = 1. Another way to

write this problem ignoring for the moment the f(x) ≥ 0 constraint is

min−
∫

log f(x)dFn(x) + µ

∫
f(x)dx

This problem has Euler function

−dFn(x)

f(x)
+ µ = 0

which has solution

f̂(x) = dFn(x).

This density has mass 1/n at each of the Xi.
A more reasonable estimator of f would introduce a prior for f that

enabled us to shrink the very rough f̂ just obtained toward something more
reasonable. A proposal of Silverman’s (1982) suggests the roughness penalty

R(f) =

∫
((log f)′′′)2dx.
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The rationale for this is that at the normal model (log f)′′′ = (log φ)′′′ ≡ 0
so this penalty shrinks toward the normal model.
Ex. Show that the penalty is zero for any normal density, not just the
standard one, so this penalized mle

min
f
−
∫

log f(x)dFn(x) + µ

∫
f(x)dx+ λR(f)

yields the η(û, σ̂2) density as λ→∞, where µ̂, σ̂2 are the usual mle estimates
in the parametric normal model.

4.1. Convolution and Kernel Density Estimation. If we have a ran-
dom variable X with distribution function F and density f and another r.v.
Z with df G and density g, then what is the df of the r.v. Y = X + Z?

Recall that

P (Y = y) = P (X + Z = y)

=

∫
P (Z = y −X

∣∣X = x)P (X = x)dx

=

∫
g(y − x)f(x)dx

where the last line uses the fact that X and Z are ⊥⊥ so conditional density
of Z is equal to unconditional density.

Kernel density estimation smooths the empirical df by convolution.

We take X to be distributed as Fn

Fn(x) = n−1
∑

I(Xi ≤ x)

then we smooth by convolution.

fn(y) =

∫
g(y − x)dFn(x)

= n−1
n∑
i=1

g(y −Xi)

so we are averaging the kernel density g evaluated at the points y − Xi.
Clearly, the choice of the “bandwidth,” the scale of the kernel function h
is critical to this approach. There is a massive literature on this subject.
To explicitly introduce the bandwidth we can suppose that g is a rescaled
version of some standardized g0, so that

g(x) = g0(x/h)/h

Figure 2 illustrates several examples in which we have a small number of
observations. The individual kernel functions are depicted in grey and the
solid black line denotes the estimate fn obtained by summation. There are
nice ways to combine the foregoing approaches by penalization of the log
likelihood of a kernel smoothed version of the density.
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Figure 5. Kernel Density Estimation: The figure illustrates
kernel density estimation for four different bandwidths ap-
plied to a small (n = 10) sample from the standard normal
distribution. The grey constituent kernels are averaged to
obtain the black estimate superimposed on the plot. The
bandwidths for the four panels are {.05, .25, .5, 1}.

5. Nonparametric Regression

At this point you are probably wondering what does all this have to do
with nonparametric regression estimation? There obviously isn’t much time
remaining to answer this question, but I’ll try to sketch some basic ideas in
one leading example.

5.1. Kernel Regression and Local Polynomial Regression. One can
use kernel density estimation to estimate conditional mean regression func-
tions. The basic idea was almost simultaneously proposed by Nadaraya and
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Watson. Consider a general regression model

yi = g(xi) + ui

where g(x) = E(Y |X = x), in order to estimate g we may consider

E(Y |X = x) =

∫
y
f(x, y)

f(x)
dy

Now suppose we use Kernel density estimation to estimate both f(x, y) and
f(x). This is the basic idea of Nadaraya-Watson estimator. In the numerator
we have

f̂(x, y) = n−1
∑

Kh1(x−Xi)Kh2(y − Yi)
then ∫

yf̂(x, y)dy = n−1
∑∫

Kh1(x−Xi)yKh2(y − Yi)dy

= n−1
∑

Kh1(x−Xi)

∫
y

h2
K

(
y − Yi
h2

)
dy

= n−1
∑

Kh1(x−Xi)

∫
(sh2 + Yi)K(s)ds

= n−1
∑

Kh1(x−Xi)Yi

Since
∫
sK(s)ds = 0 and

∫
K(s)ds = 1. Thus we have

ĝh(x) = n−1
∑
Kh(x−Xi)Yi

n−1
∑
Kh(x−Xi)

=
∑

whi(x)Yi

where whi(x) =
(nh)−1

∑
K((x−Xi)/h)

f̂h(x)
.

So at x the estimate of E(Y |X = x) is a weighted average of the Yi “near
x”. The problem with this idea is that we are really assuming a piecewise
constant model for E(y|x) and this is probably not very reasonable in most
applications. Recent work has emphasized similar methods, but replacing
the piecewise constant model with a piecewise linear, or piecewise polyno-
mial model. We won’t dwell on this, but instead briefly describe another
approach that is more directly related to penalty methods.

5.2. Smoothing Splines. Consider the model

yi = g0(xi) + ui i = 1, . . . , n

again we might begin by assuming that u ∼ N (0, σ2I). We need to make
some sort of assumptions about the form of g0. Until now we say, “oh, lets’
make it linear, or quadratic, or ...”. Now we can assume that it might be
linear, so we will take as a “prior for g”,

P (g) =

∫
(g′′(x))2dx
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This will play the role of ‖ α ‖ in the previous section. When g is linear then
P (g) = 0 then g is very smooth, otherwise P (g) is a measure of roughness
and we choose g to minimize

(∗)
∑

(yi − g(xi))
2 + λ

∫
(g′′(x))2dx

to balance fidelity to the data and fit.
A nice application of the usual Euler-Lagrange theory of the calculus of

variations implies that our minimizer must satisfy the condition that

g′′′′(x) = 0

except at a finite set of points. This means ĝ is a piecewise cubic spline.
The algebra turns out to be quite similar to the prior examples we can

write (∗) as

‖ y − a ‖2 +λ ‖ c ‖2R
where a = (g(xi)) and c = (g′′(xi)) but by continuity Rc = Q′a for known
R and Q depending only on the x’s, so we can write

‖ y − a ‖2 +λa′QR−1Q′a

and this leads to an augmented data problem(
y
0

)
=

[
I

λQR−1Q′

]
a

+

(
u
v

)
so

â = (I − λQR−1Q′)y
≡ A(λ)y

SoA(λ) plays a role something like P = X(X ′X)−1X ′ in ordinary regression.
A simple example of this approach is the problem of smoothing equally

spaced time series data, in macroeconomics this is sometimes referred to
as the Hodrick-Prescott filter. For equally spaced x’s the penalty may be
written as

J(p) =
T∑
t=3

(∆2yt)
2

and the computation becomes quite easy. A nice example of the power of the
R language is the following program to implement this smoothing method

hpfilter <- function(y,lambda=1600){
eye <- diag(length(y))

solve(eye+lambda*crossprod(diff(eye,d=2)),y)

}
Try the following example:

x <- (1:1000)/50

y <- sin(x)+rnorm(1000)/5

plot(y)
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lines(hpfilter(y))

lines(sin(x),col=‘‘red’’)

A very intriguing problem is how to choose λ. If A(λ) were a projection
matrix we could use TraceA(λ) = pλ as a measure of the dimension of the
model. Recall that

Trace(PX) = Trace((X ′X)−1X ′X) = p

where p is the rank of X. Something similar can be done here even though
A(λ) isn’t strictly a projection. Rather strangely we obtain a measure of
the dimensionality of the fitted model that is real valued, not necessarily an
integer, but this isn’t really a problem and allows us to consider AIC, SIC,
etc as model selection criteria for choosing λ.

5.3. Quantile Smoothing Splines. We have stressed estimation of condi-
tional mean functions thus far, but similar methods can be used to estimate
conditional quantile functions. In Koenker, Ng, and Portnoy (1994) it is
proposed to estimate,

min
g

∑
ρτ (yi − g(xi)) + λ

∫
|g′′(x)|dx.

Note that the absolute value in the penalty term is less sensitive to sharp
bends in he fitted function, This penalty leads to piecewise linear solu-
tions with the tuning parameter, λ, controling the number of distinct seg-
ments. This approach is implemented in the rqss function in the R package
quantreg. An advantage of this approach is that it is relatively easy to im-
pose qualitative constraints such as monotonicity or convexity on the fitted
functions. We illustrate an application of this approach in the final figure
of the lecture.
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Figure 6. Quantile Smoothing Splines: The figure illus-
trates data from a light detection and ranging (lidar) ex-
periment. See Ruppert, Wand, and Carroll (2003) for
further details. We superimpose 5 conditional quantile
function estimates on the scatterplot corresponding to the
{0.05, 0.25, 0.50, 0.75, 0.95} values of the parameter τ . The
tuning parameter λ is fixed at the value 10 for all of the fit-
ting. In the left panel the fitting is unconstrained, in the
right panel the fitted functions are constrained to be mono-
tone decreasing.


