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The �-Method and the Bootstrap

Introduction to Nonlinear Inference

Let me begin with a very simple inference problem which has a personal attraction to me, because
it was one of the �rst interesting applied problems I faced (while writing my thesis). I had estimated
a cost function of the quadratic form,

(1) yi = �0 + �1xi + �2x
2

i + z0i� + ui

where yi was log cost of �rm i, xi was log output and zi was a vector of other characteristics of the

ith �rm. It is easy to show that minimum average cost occurs at output level

q̂� = expf(1� �̂1)=2�̂2g:

It is easy enough to make a point estimate of this quantity, but the question of how to compute a
con�dence interval for this estimate is not quite as easy.

One approach is the �-method, write � = (�; �) and q� = h(�); then the asymptotic normality of
�; p

n(�̂ � �); N (0; V )

where �2(X 0X)�1 implies that p
n(q̂� � q�); N (0;rh0Vrh)

where rh is quite easily computed. In e�ect we have pretended that the nonlinear function h(�) can
be well approximated by the linear function

~h(�) = h(�0) +rh(�0) � (� � �0):

Obviously, this works asymptotically because for large n, �̂ is concentrated very close to �0 and h

is smooth, i.e., well-approximated by a linear function in a neighborhood of �0. However, we can get
some idea of why the �-method might perform badly by asking how linear is h(�) in some appropriately
de�ned con�dence region for �. For example, we could draw a con�dence ellipse for (�1; �2) based on
F-theory and then compute h(�) for various values of (�1; �2) in this con�dence region { would these
values be well approximated by the tangent plane of h(�) at �̂1; �̂2; or not?

This suggestion contains the essential idea for various improvements. Let's begin by considering
how we might go about computing an exact solution to the con�dence interval problem. If we believed
in the full classical linear model conditions for (1), iid Gausian errors, etc. etc., then we have already
seen that

V �1=2
n (�̂ � �0) � Studentn�p(0; Ip)

where he rhs denotes a multivariate Student-t random vector with mean 0 and dispersion matrix Ip
and n � p degrees of freedom with

Vn = �̂2(X 0X)�1
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Thus, in principle we could �nd the exact distribution of h(�) by the usual transformation formulae of
the calculus. This is tedious and probably not worth the e�ort unless h(�) is something quite important
that will be used repeatedly.

A simpler approach would be to approximate the distribution of h(�) by simulation. [Finally, we
are getting closer to the bootstrap!]. How to do this? Let Z be a draw from Studentn�p(0; Ip) then

~Z = �̂ � V 1=2
n Z

has the distribution represented by the con�dence region referred to above, in particular if we looked
just at the two coordinates corresponding to (�1; �2) of ~Z, they would fall into the 95% con�dence
ellipse eluded to earlier with probability .95. Thus, suppose we now take a random sample of size R

of such ~Z 's, denote the jth one by ~Zj and compute R estimates of q� from them:

q̂� = h( ~Zj) j = 1; : : : ; R

and �nally, imagine computing the standard deviation of these, or even better, computing the �=2th

and (1� �=2)th quantiles of these and de�ning a CI for q� as

fq� : q� 2 (q̂�
R
(�=2); q̂�

R
(1� �=2))g:

As R ! 1 these sample quantiles converge to the true quantiles of the distribution we could have
computed analytically, but were too lazy to undertake. But now it is natural to object to the fact
that we may not be sure about all of the assumptions which underlay the assertion that �̂ had this
exact Student-t distribution. What then?

Under the slightly weaker condition that the errors are iid but not necessarily Gaussian we might
suggest the following strategy which brings us even closer to the bootstrap. What would be our best
guess about the distribution of the errors under the conditions speci�ed? Obviously,

F̂n(u) = n�1
X

I(ûi � u)

We can conveniently think of sampling from this distribution as simply drawing from the set fû1; : : : ; ûng,
assigning probability 1=n to each element, with replacement. That is, on each draw we select an integer
from 1 to n, say k, making sure that each integer is assigned probability 1=n. Having done this n
times we have a new vector of residuals

�u = (ûk1 ; ûk2 ; : : : ; ûkn)

then de�ne a new y-vector
�y = ŷ + �u = y � û+ �u

and compute a new least squares estimate

�� = (X 0X)�1X 0�y

And now repeat this process R times each time getting a new �� and then computing a new value for

�q� = h(��)

Again this yields a sample of R values of the quantity of interest which can then be used to estimate
a standard error or construct a con�dence interval.
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Implementation: In S there are a number of functions which have built-in capability for bootstrap-
ping. In addition, there are the functions provided in Davison and Hinkley (1997). The simplest
things can be easily implemented using the sample command. To illustrate consider the following
code fragment

fit lm (y � x)

uhat fit$resiid

h reg(O, R)

for (i in 1:R) f

yh fit$fit + sample (uhat, replace=T)

b lm(yh � x)$coef

h[i] exp((1-b[2])/2*b[3]))

g

quantile(h, c(0.025, 0.975))

The bootstrap is a fascinating new topic which has sparked intense interest from both applied
and theoretically inclined researchers since Efron's (1979) paper. There are at least a dozen recent
monographs on the subject of which I would recommend Efron and Tibshirani (1993), Davison and
Hinkley (1997). At an elementary level the paper of Efron and Gong (1983) is still useful, I believe.

Efron's bootstrap provides a very general approach to resampling which avoids some problems
inherent in the systematic resampling of the jackknife. In German the expression an dem eigenen

Haaren aus dem Sumf ziehen nicely captures the idea of the bootstrap { \to pull yourself out of the
swamp by your own hair." The sample itself is used to assess the precision of the estimate �̂.

I will conclude with a prototypical example of the use of the bootstrap. An enormous variety of
other examples may be found in the books by Efron and Tibshirani (1993) and Davison and Hinkley
(1997).

In regression we need not use the residual bootstrap on page 2. A more direct implementation
of the bootstrap would be to \resample (x; y)-pairs" i.e., at each replication draw a random sample
fk1; k2; : : : ; kng with ki's iid and uniform over the integers 1; : : : ; n: The sample f(xki ; yki) i = 1; : : : ; ng
can then be used to compute �� and a covariance matrix of �̂ could be computed as

V̂ = R�1

RX

i=1

(��i � �̂)(��i � �̂)0

This approach is less sensitive to assumptions than the residual based bootstrap introduced earlier. In
particular, it does not assume that the regression errors are iid so it can accommodate heteroscedastic-
ity for example. Of course it does still assume that the observations are independent. Bootstrapping
dependent observations is an inherently more di�cult task which has generated its own rather large
literature. Rather than using V̂ to compute standard errors one could, of course, again use the per-
centile method directly on the bootstrap sample of ��i vectors. This approach can be used e�ectively in
M-estimation contexts to generate automatic versions of the Huber Sandwich. For OLS this approach
approximates the Eicker-White formula.
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