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SUMMARY

A new class of parametric regression models for both under- and overdispersed count data is proposed.
These models are based on squared polynomial expansions around a Poisson baseline density. The approach
is similar to that for continuous data using squared Hermite polynomials proposed by Gallant and Nychka
and applied to ®nancial data by, among others, Gallant and Tauchen. The count models are applied to
underdispersed data on the number of takeover bids received by targeted ®rms, and to overdispersed data on
the number of visits to health practitioners. The models appear to be particularly useful for underdispersed
count data. # 1997 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

Count data regression models are models for the special case where the dependent variable takes
only non-negative integer values or counts. Overviews of standard models include Cameron and
Trivedi (1986), Winkelmann (1994), and Gurmu and Trivedi (1994).

The benchmark Poisson model for count data imposes the restriction that the conditional
variance equals the conditional mean. This restriction is usually rejected in economic applica-
tions. In the common case of overdispersion, i.e. the conditional variance exceeds the conditional
mean, the negative binomial is widely used. For underdispersion, i.e. the conditional variance is
less than the mean, the preferred treatment is less well established. The Katz system or GECk
model (see King, 1989, and Winkelmann and Zimmermann, 1991) and the generalized Poisson
(see Consul and Famoye, 1992) have the theoretical weakness that a restriction is placed on the
range of values that the dependent variable can take. Furthermore, this range is determined by
the parameter values, a departure from the usual assumptions made in establishing consistency.
The double Poisson model of Efron (1986) involves an approximation so that the probabilities do
not sum to exactly one. The hurdle model (see Mullahy, 1986) is another possible model for
underdispersed data, but is not parsimonious as in typical applications the number of parameters
to be estimated is doubled.

We present a new class of parametric models for count data, based on a squared polynomial
expansion around any given discrete density. For underdispersed data these models provide a
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parsimonious model without restrictions on the range of the dependent count, while for over-
dispersed data these models provide an alternative to the negative binomial.

The approach is similar to that for continuous data, using a squared Hermite series expansion
from a baseline normal density, developed by Gallant and Nychka (1987) and applied to ®nance
data in many applications, beginning with Gallant and Tauchen (1989). Applications to discrete
data include Gabler, Laisney, and Lechner (1993) for binary data and Gurmu, Rilstone, and
Stern (1994) for count data. Gurmu et al. (1994) use an orthogonal series expansion from a
baseline gamma density to model an unobserved heterogeneity term in a Poisson mixture model.
This provides a sequence of models for overdispersed data which nests the Poisson and negative
binomial but does not permit underdispersion. Here we consider series expansion for the count
variable, rather than the heterogeneity term, and obtain a model that can ®t both over- and
underdispersed data.

The approach is particularly attractive when the data are underdispersed. An application
studied here is the number of takeover bids (after the initial bid that made it a takeover target)
received by ®rms that have been targeted for takeover. Jaggia and Thosar (1993) modelled a
sample of 126 targeted ®rms. Their Poisson regression analysis con®rmed a priori beliefs that the
number of bids decreased the more attractive was the initial o�er, and ®rst increased and then
decreased with ®rm size. There is no support, however, for the view that defensive actions taken
by management are associated with a decrease in the number of bids. Re-analysis of the Jaggia
and Thosar data reveals that the data are underdispersed, albeit mildly so. More importantly, the
®tted Poisson model greatly overpredicts the probability of a ®rm receiving zero bids. The series
expansion model proves to be capable of accommodating the underdispersion and predicting
quite well the probability of zero bids.

A very common application of count regression models is to measures of health utilization
such as number of doctor visits, with explanatory variables including various socio-economic
variables, health status, and type of health insurance. Health-utilization counts are usually (if not
always) overdispersed. We use data from Cameron et al. (1988) on the number of visits to non-
doctor health professionals for a large sample of 5190 individuals. The data are quite overdis-
persed, and are very well ®t by a negative binomial model. This provides a very competitive
benchmark against which to compare the series expansion model. In particular, in applications to
continuous time-series data, models based on squared polynomial expansions are not always
parsimonious. For our application, the preferred series expansion model is a ®fth-order model.
This outperforms the negative binomial model, as does a fourth-order model. For this
application successful modelling does not require too high an order expansion, though it is more
parsimonious to use the negative binomial.

In Section 2 we present the model and its properties, with additional details provided in
Appendices A and B at the end of the paper. A simulation study is presented in Section 3.
Applications to both under- and overdispersed data are presented in Section 4. Both simulation
and application use the Poisson density as the baseline density. Conclusions are presented in
Section 5.

2. MODEL BASED ON SQUARED POLYNOMIAL EXPANSION

2.1. General Results

We begin with a general presentation for any type of data and baseline density, before
specializing to count data with a Poisson density as a baseline. Consider a scalar random variable
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y with baseline density f � y j lll�, where lll is possibly a vector. De®ne the pth-order polynomial

hp� y j a� �
Xp
k�0

aky
k �1�

where a � �a0; a1; . . . ; ap�0 and normalize a0 � 1. The density based on a squared polynomial
series expansion is

gp� y j lll; a� � f � y jlll� � h
2
p� y j a�
Zp�lll; a�

�2�

where Zp�lll; a� is a normalizing constant term that ensures that the density gp� y j lll; a� sums to
unity, and squaring the polynomial ensures that the density is non-negative. In Appendix A it is
shown that

Zp�lll; a� �
Xp
k�0

Xp
l�0

akalmk� l �3�

where mr � mr�lll� denotes the rth non-central moment of the baseline density f � y j lll�.
The moments of the random variable ywith density gp� y j lll; a� are readily obtained from those

of the baseline density f � y j lll� as

E� yr� �

Xp
k�0

Xp
l�0

akalmk� l�r

Zp�lll; a�
�4�

(see Appendix A). The rth moment of y will generally di�er from the rth moment of the baseline
density. In particular, this is the case for the mean.

2.2. Baseline Density Poisson (PPp model)

For the Poisson baseline density, l is a scalar and f � y j l� in equation (2) is given by

f � y j l� � eÿlly

y!
y � 0; 1; 2; . . . �5�

The normalizing constant Zp�l; a� de®ned in equation (3) and the moments E� yr� de®ned in
equation (4) are evaluated at the moments mr�l� of the Poisson, which can be obtained from the
moment-generating function using mr�l� � @rexp�ÿl � let�=@tr j t�0.
We call the model with density (2) and baseline density (5) the PPp model (for Poisson

Polynomial of order p). As an example the PP2 model is

g2� y j l; a� �
eÿlly

y!
� �1 � a1y � a2y

2�2
Z2�l; a�

�6�

where

Z2�l; a� � 1 � 2a1m1 � �a21 � 2a2�m2 � 2a1a2m3 � a22m4 �7�
The ®rst two moments of y are

E� y� � �m1 � 2a1m2 � �a21 � 2a2�m3 � 2a1a2m4 � a22m5�=Z2�l; a�
E� y2� � �m2 � 2a1m3 � �a21 � 2a2�m4 � 2a1a2m5 � a22m6�=Z2�l; a�

�8�
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where evaluation of (7) and (8) requires the ®rst six moments of the Poisson density

m1 � l
m2 � l � l2

m3 � l � 3l2 � l3

m4 � l � 7l2 � 6l3 � l4

m5 � l � 15l2 � 25l3 � 10l4 � l5

m6 � l � 31l2 � 90l3 � 65l4 � 15l5 � l6

The PPp model permits a wide range of models for count data, including multimodal densities
and densities with either under- or overdispersion. These possibilities are illustrated using the PP1
model.

Table I presents values of l and a1 for the PP1 model that produce densities with combinations
of mean �E� equal to 0.5, 1.0, and 5.0 and variance/mean ratio �R� equal to 0.7, 1.0, and 2.0. This
illustrates the ability to model both over- and underdispersion, with equidispersion when a1 � 0,
and that the mean of y di�ers from the mean of the baseline density when a1 6� 0.

These values of l and a1, for given E and R, are not unique. For example, when E � 1 and
R � 1, possible values of �l; a1� are the Poisson value of (1, 0), and the PP1 value of
approximately (0.276, ÿ2�532�. This poses no identi®cation problem as while the ®rst two
moments are the same, other moments such as the third will di�er and the distribution will di�er.
This is illustrated in Figure 1, which presents the two di�erent probability densities for these two

Table I. Means �E� and dispersion ratios �R� of PP1 model for various parameter values

E � 0�5 E � 1 E � 5
l a1 l a1 l a1

R � 1�0 0.500 0.000 1.000 0.000 5.000 0.000
R � 0�7 0.075 2.148 0.342 1.182 3.290 6.115
R � 2�0 0.373 ÿ1�279 1.900 ÿ0�299 3.572 ÿ0�299

Figure 1. Frequency distributions for Poisson and PP1 �l � 0�276; a1 � ÿ2�525� models with same mean
E � 1 and variance±mean ratio R � 1
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cases with mean and variance equal to unity. The distribution is uniquely determined by a
particular value of �l; a1�.

Figure 2 shows changes in the density as �l; a1� changes to accommodate di�erent departures
from equidispersion, holding the mean ®xed at 5 �E � 5�. As expected, underdispersed data are
more centred around the mean than the Poisson while the overdispersed data are more scattered.
The overdispersion case R � 2 shows the possibility of a bimodal density, though overdispersed
PP1 densities are not necessarily bimodal.

Figure 3 shows that the densities can at times change little with changes in a1. The values
l � 3�290 and a1 � 6�115 produce R � 0�7 and E � 5�0. Decreasing a1 from 6.115 to 5.0 or even
3.0 makes little change to the density. In fact holding l � 3�290, letting a1 � 5�0 produces
R � 0�703 and E � 4�987, while letting a1 � 3�0 produces R � 0�714 and E � 4�943. If in
application such a ¯at spot in the density is encountered, one can expect imprecision in the
separate estimation of a1 and l. This point is discussed further in Section 3.

Figure 2. Frequency distributions for PP1 models with mean E � 5 and di�erent variance±mean ratios

Figure 3. Frequency distributions for PP1 models with l � 3�290 and di�erent values of a1
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Figure 4 plots both the variance±mean ratio and the mean for values of l in [0.1, 4] and a1 in
�ÿ2; 3�. Overdispersion is obtained for values of a1 less than zero but greater than a value that
ranges from approximately ÿ0�5 for l � 4 to ÿ2 for l � 0�1. The mean is generally increasing in
l and increasing in the absolute value of a1. There is great variation in both R and E for values of
a1 close to zero. By contrast, for values of a1 a considerable distance from zero and a ®xed value
of l, both R and E are relatively invariant to changes in a1. An example of this behaviour has
already been presented in Figure 3.

We conclude that even the simplest generalization of the Poisson model, the PP1, is a quite
¯exible model for counts.

2.3. Estimation

We consider estimation based on a sample of independent observations f� y1;X1�; . . . ; � yN;XN�g
of size N. Regressors are introduced by allowing the parameter to vary with regressors, while the
polynomial coe�cients a are unknown parameters that do not vary with regressors.

The parameter li is determined by a known function of regressors Xi and an unknown
parameter vector bbb

li � l�Xi; bbb� �9�

Figure 4. Variance±mean ratio �R� and mean �E� for PP1 models with l in [0.1, 4.0] and a1 in �ÿ2; 3�.
(In the third panel, the ®rst contour gives regions with R < 0�7, the second gives 0�74R < 1�3, etc. In the

fourth panel, the ®rst contour gives regions with E < 0�5, the second gives 0�54 E < 1, etc.)
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The log-likelihood function is then

ln L�bbb; a� �
XN
i�1
fln f � yi j l�Xi; bbb�� � ln hp� yi j a�2 ÿ ln Zp�l�Xi; bbb�; a�g �10�

with ®rst-order conditions

@ ln L
@bbb

�
Xn
i�1

@ ln f � yi j li�
@li

ÿ @Zp�li; a�
@li

1

Zp�li; a�

( )
@li
@bbb

@ ln L
@a
�
Xn
i�1

2
@ ln hp� yi j a�

@a
ÿ @Zp�li; a�

@a

1

Zp�li; a�

( )
which given equation (3) become

@ ln L
@bbb

�
XN
i�1

@ ln f � yi j li�
@li

ÿ

Xp
k�0

Xp
l�0

akal@mk� l;i=@li

Xp
k�0

Xp
l�0

akalmk� l;i

8>>>><>>>>:

9>>>>=>>>>;
@li
@bbb

@ ln L
@aj

�
XN
i�1

2
yjXp

k�0
aky

k

ÿ

Xp
k�0

akmk� j;i

Xp
k�0

Xp
l�0

akalmk� l;i

8>>>><>>>>:

9>>>>=>>>>; j � 1; . . . ; p

�11�

Consider the PPp model, i.e. the baseline density is speci®ed as the Poisson, with the usual
Poisson regression parameterization of the mean

li � exp�X0ibbb� �12�
Then the ®rst term in equation (11) simpli®es to

@ ln L
@bbb

�
XN
i�1

yi ÿ

Xp
k�0

Xp
l�0

akalmk� l�1;i

Xp
k�0

Xp
l�0

akalmk� l;i

8>>>><>>>>:

9>>>>=>>>>;Xi �13�

(see Appendix A) while the second term does not simplify.
Using equation (4) with r � 1 and equation (3), (13) can be re-expressed as

@ ln L
@bbb

�
XN
i�1
� yi ÿ E� yi jXi��Xi �14�

Thus the residual is orthogonal to the regressors, and the residuals sum to zero if an intercept
term is included in the model.1 These properties do not hold for other generalizations of the
Poisson such as the negative binomial.

1 This result holds more generally when the baseline density is a linear exponential family density with conditional mean
function corresponding to choosing the canonical link function.
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By standard results for ML estimation the MLE for bbb and a is asymptotically normal
distributed with variance matrix the inverse of the information matrix, under the assumption that
the data are generated by equations (2) and (12). Note that we do not consider the technically
more di�cult question of whether by letting p!1 as N !1 the PPp model can approximate
any model arbitrarily well.

As is common for many non-linear models, the likelihood function can have multiple optima.
To increase the likelihood that a global maximum is obtained we follow Horowitz (1992) and use
fast simulated annealing (Szu and Hartley, 1987), a variation on simulated annealing (cf. Go�e
et al., 1994), to obtain parameter estimates close to the global optima which are used as starting
values for standard gradient methods. The computational methods used are detailed in
Appendix B.

2.4. Testing and Model Evaluation

For continuous time-series data, Hall (1990) proposed Lagrange multiplier (LM) tests of
normality against a squared Hermite polynomial expansion. The null hypothesis of normality
implies that all components of a except a0 equal zero, i.e. a � e, where e � �1 0 0 . . . 0�0. Hall
(1990, p. 419) noted, however, that under this null hypothesis there are linear dependencies
among components of the score vector.

A similar situation arises here in the count data setting where we consider LM tests of the null
hypothesis that the data are Poisson, against the alternative of a squared polynomial expansion.
For the PPp model with li � exp�X0ibbb�, under H0:a � e, equations (11) reduce to

@ ln L
@bbb

����
a�e
�
XN
i�1
� yi ÿ li�Xi

@ ln L
@aj

����
a�e
�
XN
i�1

2� y j ÿ mj;i� j � 1; . . . ; p

�15�

There is clearly a problem when Xi includes an intercept term with coe�cient b0. Then for the
derivative with respect to the ®rst term in the polynomial series expansion we have

@ ln L
@a1

����
a�e
� @ ln L

@b0

����
a�e
�
XN
i�1
� yi ÿ li�

so that these derivatives with respect to di�erent parameters are identical. Following Hall (1990)
we therefore drop this ®rst term. The second and higher terms are simply tests of the second and
higher raw moments. Thus, for example, the test based on @ ln L=@a2 j a�e is a test of whether
E� y2i jXi� � l2i � li and is clearly related to the usual test of overdispersion or underdispersion
which is a test of E��� yi ÿ li�2 ÿ yi� jXi� � 0.

Wald and LR tests of statistical signi®cance of a and bbb can also be performed. For Wald tests
three di�erent estimates of the variance matrix might be used. Let A � SN

i�1@
2g� y�=@�@�0 j

�̂
and

B � SN
i�1�@g� y�=@�� � �@g� y�=@�0� j �̂, where g� y� is the PPp density and � � �bbb0a0�0. Then the

simplest estimate of the variance matrix is the outer-product (OP) form Bÿ1, another standard
estimate is the Hessian (H) form ÿAÿ1, and a measure robust to model misspeci®cation is the
sandwich (S) form Aÿ1BAÿ1.
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A standard model-selection criterion is the Bayesian information criterion, BIC �
ÿ2 ln L � ln�N� � dim���, which is used by, for example, Gallant and Tauchen (1989).2 We
also consider the closeness between the actual and ®tted distributions. Let p̂ji � g� yj jXi; �̂�
denote the predicted probability that yi equals j. It is useful to compare the average of these
predicted probabilities, p̂j � �1=N�SN

i�1p̂ji, to �pj, the fraction of the observations yi that take
value j. A summary statistic is the sum of absolute di�erences S

max� yj �
j�0 j �pj ÿ p̂j j . These measures

are particularly useful when comparing non-nested models.

3. SIMULATION

The following simulation demonstrates the major points that emerged from a much wider range
of simulations. The data are generated from a PP1 model with one regressor. Speci®cally,
li � exp�b0 � b1xi� where xi is generated from the uniform distribution on the unit interval and
the same draw x1; . . . ; xN is used in all simulations. The parameters a1 and b0 are chosen so that
yi has mean 1.0 and variance 1.0, 0.7 or 2.0 in the i.i.d. model (i.e. b1 � 0�. These values are,
respectively, �a1; b0� � �0; 0�, �1�182; ÿ1�074� and �ÿ0�299; 0�642�, and correspond to, respect-
ively, equidispersion, underdispersion and overdispersion. Simulations from the model with
a1 � 0 (so R � 1� can be used to test size properties of tests for Poisson while other values are
useful for power. The parameter b1 is set either to 0, to investigate size, or 0.5, to investigate
power. All simulations use the sample size N � 200 and are performed s � 1000 times. The
parameters to be estimated are a1, b0 and b1, where b0 � ln l when b1 � 0 since then
l � exp�b0�.

The bias and MSE for the PP1 MLE in the i.i.d. case �b1 � 0� are presented in the ®rst three
rows of Table II. There is very little bias in estimating the slope coe�cient b1 which is found to be
very close to its true value of zero. When the data-generating process (dgp) also includes a
regressor �b1 � 0�5�, from rows four to six of Table II the bias in estimating b1 increases but is
still small, while the bias in estimating a1 and b0 falls in the overdispersed case. The last two rows
consider Poisson estimation when the dgp is the Poisson �a1 � 0�. Compared to the PP1 estimates
(in rows one and four) we see that for the slope coe�cient b1 there is no penalty in estimating the

2 This is a variant of the Akaike information criteria (AIC) that has a penalty for additional parameters greater than
the AIC � ÿ2 ln L � dim��� but not as high as some other variants such as the consistent AIC which uses
ÿ2 ln L � �1 � ln N� � dim���.

Table II. Bias and MSE of PP1 MLE (®rst six rows) and Poisson MLE (last two rows) for Poisson �R � 1�
and PP1 �R � 0�7 or 2) dgp's. �N � 200; s � 1000�

True values Bias MSE
R a1 b0 b1 a1 b0 b1 a1 b0 b1

1.0 0.000 0.000 0.000 ÿ0�055 0.044 0.008 0.092 0.154 0.067
0.7 1.182 ÿ1�074 0.000 0.163 ÿ0�064 ÿ0�008 0.921 0.247 0.085
2.0 ÿ0�299 0.642 0.000 ÿ0�087 0.210 ÿ0�007 0.028 0.162 0.065
1.0 0.000 0.000 0.500 ÿ0�055 0.065 ÿ0�030 0.080 0.133 0.060
0.7 1.182 ÿ1�074 0.500 0.173 ÿ0�081 0.014 1.078 0.287 0.112
2.0 ÿ0�299 0.642 0.500 ÿ0�020 0.068 ÿ0�079 0.006 0.051 0.077
1.0 0.000 0.000 0.000 Ð 0.004 0.009 Ð 0.020 0.061
1.0 0.000 0.000 0.500 Ð 0.008 ÿ0�002 Ð 0.020 0.051
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over®tted PP1 model, but there is much less precision in estimating b0 when in addition one
attempts to estimate a1.

In Table III the precision of estimation of parameter estimation and the di�erence between
various estimates of precision are investigated. This table presents the proportion of times that
the null hypothesis of a zero coe�cient is rejected when performing a Wald test at 5%. Three
di�erent estimates of the variance matrix presented in Section 2.4 are used, namely outer-product
(OP), Hessian (H) and sandwich (S). Comparing the columns OP, H and S in Table III there is
relatively little di�erence in rejection rates using these di�erent measures. From the ®rst three
rows of Table III where the dgp sets b1 � 0 the size of tests of b1 � 0 is quite good. The actual
size is with one exception, the OP version in the overdispersed case, in the range 0.039 to 0.080
compared to a nominal size of 0.050. From rows one and four, however, where the dgp sets
a1 � 0 there is clearly a problem in the size of tests of a1 � 0 with the nominal size ranging
between 0.205 and 0.248. Similar problems arise in this case for the Wald test of b0 � 0. This
problem is closely related to problems discussed in Section 2.4 of performing an LM test of
a1 � 0. Under the null hypothesis two of the ®rst-order conditions are identical. The problem
may potentially be solved by an LR test as it does not attempt to separate the role of b0 and a1.

The tenth column (LR) in Table III gives the proportion of times the PP1 model is rejected on
the basis of a likelihood ratio test at the 5% signi®cance level. From rows one and four this has
very good size properties with actual size of 0.047 and 0.054 very close to nominal size. The
eleventh column of the table (BIC) gives the proportion of times the PP1 model is rejected on the
basis of BIC presented in Section 2.4. We expect rejection of the Poisson model less often using
BIC than LR, since BIC rejects Poisson if the di�erence in ÿ2 ln L exceeds ln�200� � 5�30,
whereas the critical value for LR is w20�05�1� � 3�84. This is the case for all but the overdispersed
model results in rows three and six where the rejection rates are the same. Finally the ®tted
distribution is much closer to the actual distribution for PP1 and Poisson where a1 6� 0, and also
closer when a1 � 0, in which case the dgp is the Poisson. This closeness is measured by comput-
ing the average over the simulations of the absolute di�erences in predicted probabilities as
discussed in Section 2.4. For space reasons this statistic is not included in the table.
In summary there appears to be a gain to ®tting a PP1 model over ®tting a Poisson when the

dgp is PP1 or Poisson. Care needs to be taken in estimating a1 and b0 and their standard errors,
and it is best to use the LR test rather than LM or Wald test in performing a formal test of
Poisson against PP1. No real problems arise in estimating the slope coe�cient and its standard
error.

Table III. Size and power using outer-product (OP), Hessian (H) and sandwich (S) variance estimates of
PP1 MLE (®rst six rows) and Poisson MLE (last two rows) for Poisson �R � 1� and PP1 �R � 0�7 or 2)

dgp's. �N � 200; s � 1000�
Dgp Test a1 � 0 Test b0 � 0 Test b1 � 0 Selection

R b1 OP H S OP H S OP H S LR BIC

1.0 0.0 0.205 0.227 0.248 0.164 0.192 0.226 0.043 0.047 0.044 0.047 0.025
0.7 0.0 0.986 0.985 0.984 0.977 0.992 0.991 0.039 0.040 0.043 0.969 0.940
2.0 0.0 0.711 0.711 0.947 0.708 0.736 0.733 0.121 0.080 0.065 0.711 0.711
1.0 0.5 0.212 0.227 0.247 0.161 0.187 0.224 0.647 0.650 0.642 0.054 0.018
0.7 0.5 0.992 0.994 0.992 0.980 0.989 0.994 0.992 0.994 0.992 0.959 0.980
2.0 0.5 0.930 0.930 1.000 0.999 0.999 0.999 0.930 0.946 0.936 0.930 0.930
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We additionally investigated the advantage of using fast simulated annealing (FSA). Figure 5
presents the log-likelihood function for di�erent values of a1 and l � exp�b0� for one randomly
drawn sample from the PP1 model with �l; a1� � �1�9; ÿ0�299�:3 Clearly there are several local
optima. We then performed a simulation analysis where 1000 samples were drawn from this PP1
dgp. The PP1 model for these samples was estimated using as the starting value
�l; a1� � � �y; ÿ0�7�, where the starting value for l corresponds to using the Poisson MLE. The
hybrid FSA/gradient method detailed in Appendix B was used and compared to standard
Newton±Raphson (NR). In 992 cases out of 1000 the FSA method gives higher ln L and in the
other eight the same ln L as NR. Clearly there is a problem with NR and the FSA method is
better. The implementation of the FSA method we use (see Appendix B) does have the advantage
of using several di�erent starting values. When we instead use just the one starting value the FSA
gives higher ln L than NR in 949 out of 1000 cases, and the same ln L in the other 51 cases.

This simulation indicates that there are considerable computational advantages to using FSA
over NR. But because we use a hybrid FSA/gradient method to reduce computational time,
rather than pure FSA, the method is not guaranteed to converge to the global optimum and it is
advisable to use several di�erent starting values. Also it should be clear from Appendix B that
there are quite a number of decisions to be made in implementing the hybrid FSA/gradient
method and it is possible that one could make su�ciently poor choices that FSA might be no
better than NR.

4. APPLICATIONS

4.1. Takeover Bids

Jaggia and Thosar (1993) model the number of bids received by 126 US ®rms that were targets of
tender o�ers during the period 1978±85, and were actually taken over within 52 weeks of the

Figure 5. Log-likelihood function of l and a1 for the sample from a PP1 model with l � 1�9 and
a1 � ÿ0�2999

3 The log-likelihood was calculated as ln L�l; a1� � SN
i�1 ln g1� yi j l; a1� where g1� y j l; a1� denotes the PP1 density and

yi; i � 1; . . . ;N, is a random sample of size N from g1� y j 1�9; ÿ0�299�:
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initial o�er. The dependent count variable is the number of bids after the initial bid (NUMBIDS )
received by the target ®rm. The ®tted model is Poisson with regressors that measure:

(1) Defensive actions taken by management of the target ®rmÐ indicator variables for legal
defence by lawsuit (LEGLREST ), proposed changes in asset structure (REALREST ),
proposed change in ownership structure (FINREST ) and management invitation for
friendly third-party bid (WHITEKNT ). These are expected to decrease the number of bids,
aside from WHITEKNT, which may increase bids as it is itself a bid.

(2) Firm-speci®c characteristicsÐbid price divided by price 14 working days before bid
(BIDPREM), percentage of stock held by institutions (INSTHOLD), total book value of
assets in billions of dollars (SIZE ) and book value squared (SIZESQ). A high value of
BIDPREM indicates a bid so attractive that additional bids are unlikely. The greater the
institutional holdings, the more likely outside o�ers are to be favourably received, which
will encourage more bids. As the size of the ®rm increases there are expected to be more
bids, up to a point where the ®rm gets so large that few others are capable of making a
credible bid.

(3) Intervention by federal regulatorsÐan indicator variable for Department of Justice
intervention (REGULATN). Regulator intervention is likely to discourage bids.

The data have two interesting featuresÐunderdispersion and relatively few zeroes. The
amount of underdispersion is relatively modest. The sample mean of y is 1.738 and sample
variance is 2.050. This is only a small amount of overdispersion �2�050=1�738 � 1�18 ' 1�, which
can be expected to disappear as regressors are added. In fact attempts at ML estimation of the
negative binomial (Negbin 2) model yield dispersion parameter equal to its boundary value of
zero. A regression-based test of under- or overdispersion yields a coe�cient of ÿ0�0683 with a
t-statistic of 1.18. This indicates some underdispersion, though not enough to reject the null
hypothesis of equidispersion. Jaggia and Thosar accordingly used only the Poisson model.

The relatively few zeroes are quite striking. The frequencies for 0, 1, 2, . . . , 10 bids are,
respectively, 9, 63, 31, 12, 6, 1, 2, 1, 0, 0, 1. After inclusion of regressors in the Poisson model, the
average predicted frequencies for 0, 1, 2, . . . , 5 bids are, upon rounding and using results
presented below, respectively, 25, 38, 30, 19, 8, 3, so that the Poisson model greatly overpredicts
the probability of 0 counts and underpredicts the probability of 1 count. The problem is that
while the sample average is only 1.7 bids received (after the ®rst), virtually all target ®rms do
receive at least one bid.

Using the LR test the Poisson model is rejected at 5% when testing against the PP1 model,
while the PP1 model is not rejected when tested against a PP2 model. The PP1 model is therefore
preferred. Coe�cient estimates, t-statistics and mean marginal e�ects for the PP1 model are given
in Table IV, along with those for the Poisson model. The mean marginal e�ect of a one unit
change in each of the regressors is computed as �1=N�Si@E� yi jXi�=@Xij for all regressors,
including indicator variables.4 We discuss the PP1 estimates. The only defensive action variable
statistically signi®cant at 5% is LEGLREST, which has a surprising positive sign. From the last
column of Table IV legal defence by lawsuit leads to, on average, an increase of one-half bid. The
e�ect of REALREST is quite large and negative, but is statistically insigni®cant. The coe�cient

4 Strictly speaking for indicator variables one should instead evaluate the conditional mean of y at indicator variable
values of zero and one, and subtract. But taking the derivative is a reasonable approximation and is just as informative if
making comparisons across models.
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ofWHITEKNT indicates that a management invitation for a friendly third-party bid merely adds
another bidder, as it increases the number of bids by, on average, 0.9 of a bid. BIDPREM is
statistically signi®cant though has a relatively modest e�ect with an increase in the bid premium
of 0.2, which is approximately one standard deviation of BIDPREM, leading to an increase on
average of 0.24 in the number of bids. Larger institutional holdings, if anything, are associated
with a decrease in the number of bids, though this e�ect is statistically insigni®cant. The size of
the ®rm matters, with bids ®rst increasing and then decreasing as size increases. The e�ect of
intervention by government regulators is very small in magnitude and statistical signi®cance. The
model results are generally in accord with a priori beliefs, except that they provide no support for
the view that defensive measures by management are associated with a decrease in the number of
bids.

Comparing the PP1 and Poisson model estimates, the PP1 estimates are more precise, with
t-statistics around 10% higher on average than Poisson t-statistics, where the Poisson t-statistics
are based on the sandwich (or Eicker±White) estimate of the variance matrix to control for the
underdispersion. The coe�cients of the Poisson and PP1 model are scaled di�erently and not
directly comparable. To check the reasonableness of the PP1 parameter estimates we compare the
mean marginal e�ects of PP1 with those from Poisson. There is relatively little di�erence, with the
mean e�ects for all variables being within 10% of each other. The model di�erences lie in
predicting probabilities and other aspects of the distribution aside from the mean.
Predicted probabilities of the Poisson and PP1 models are compared in Table V. The second

column gives the fraction of the sample taking the particular value given in the ®rst column.
Columns three and four give the average predicted probabilities from estimated Poisson and PP1
models for that count. The ®rst of these columns displays the already discussed inability of the
Poisson model to ®t the empirical distribution mentioned earlier. The PP1 model does quite well
in ®tting the empirical distribution, with the predicted probability of 0 bids of 0.0794 being close
to the actual frequency of 0.0714, whereas the Poisson model predicts 0 bids with probability
0.2132. For the PP1 model there is still some underprediction of counts of 1 and overprediction of
counts of 2 and 3.

The commonly used negative binomial model for counts cannot be applied to underdispersed
data. The simplest to implement and most commonly used model in this case is the Poisson

Table IV. Takeover bids: parameter estimates, t-statistics, and mean marginal e�ects for Poisson and
PP1 models

Estimate t-statistic Mean deriv.
Variable Poisson PP1 Poisson PP1 Poisson PP1

ONE 0.986 0.210 2.39 0.28
LEGLREST 0.260 0.522 2.09 2.38 0.452 0.466
REALREST ÿ0�196 ÿ0�372 ÿ1�08 ÿ1�39 ÿ0�341 ÿ0�332
FINREST 0.074 0.138 0.28 0.47 0.129 0.124
WHITEKNT 0.481 1.013 4.54 3.88 0.837 0.906
BIDPREM ÿ0�678 ÿ1�334 ÿ2�29 ÿ2�46 ÿ1�178 ÿ1�192
INSTHOLD ÿ0�362 ÿ0�757 ÿ1�13 ÿ1�23 ÿ0�629 ÿ0�677
SIZE 0.179 0.329 2.87 3.99 0.310 0.294
SIZESQ ÿ0�008 ÿ0�014 ÿ2�74 ÿ3�30 ÿ0�013 ÿ0�013
REGULATN ÿ0�029 ÿ0�081 ÿ0�21 ÿ0�36 ÿ0�051 ÿ0�073
a1 3.382 3.02
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hurdle model presented in Mullahy (1986). This introduces a regression model for zero counts in
addition to and di�erent from the Poisson regression for positive counts. It should do very well
for the takeover bids data, as it is particularly the zeros that are poorly predicted by the Poisson
model. At the same time, one should only use a hurdle model if indeed there is strong theoretical
reason for treating zero counts di�erently from positive counts. Otherwise its use is a data-mining
exercise similar to putting an observation-speci®c dummy variable in a least squares regression
whenever an observation is poorly predicted. Predicted probabilities from an estimated Poisson
hurdle are presented in Table V (for space reasons the parameter estimates are not given). The
Poisson hurdle model does quite well in predicting probabilities and has lower ln L than PP1. But
it has almost twice as many parameters (20 versus 11) as the PP1 model. Allowing for this using
BIC leads to preference for the PP1 model.

An alternative model for underdispersed data is the double Poisson model proposed by Efron
(1986). This introduces one additional parameter, so is quite parsimonious compared to the
hurdle model. The regression parameter estimates (not reported) were all within 5%of the Poisson
estimates, and the additional dispersion parameter was highly signi®cant with a t-statistic of 3.92.
The predicted probabilities from this model are presented in Table V, in the column labelled DP.
These probabilities sum to 1.0108, illustrating the theoretical weakness that probabilities for the
double Poisson model do not sum to one, though the di�erence here is not great. For the most
problematic 0 and 1 counts the predicted probabilities for the double Poisson model are roughly
half-way between those for Poisson and the actual probabilities. The PP1 model is clearly
preferred with predicted probabilities closer to actual, considerably higher ln L and lower BIC.

Yet another model that can be applied to underdispersed data is the Katz system or GECk
model proposed by King (1989) and Winkelmann and Zimmermann (1991). This model has the
attraction of nesting the Poisson and, for overdispersed data, the negative binomial model. In
principle, this model can accommodate a variance of the form li � alki , where a and k are
dispersion and non-linearity parameters to be estimated. Underdispersion can arise when
ÿ1 < a < 0 and k4 1. In practice, however, computational problems arise if at any stage of
estimation and for any observation li � alki < 0. Such problems were experienced here, and we
set k � 1. To avoid convergence problems the regressors were rescaled so that Poisson regression

Table V. Takeover bids: predicted probabilities from Poisson, PP1, Hurdle, double Poisson, and
GECk models

Counts Actual Poisson PP1 Hurdle DP GECk

0 0.0714 0.2132 0.0794 0.0718 0.1437 0.1793
1 0.5000 0.2977 0.4313 0.4916 0.3616 0.3151
2 0.2460 0.2327 0.2864 0.2382 0.2760 0.2598
3 0.0952 0.1367 0.1252 0.1079 0.1395 0.1429
4 0.0476 0.0680 0.0482 0.0486 0.0575 0.0630
5 0.0079 0.0305 0.0182 0.0221 0.0214 0.0249
6 0.0159 0.0128 0.0070 0.0103 0.0075 0.0094
7 0.0079 0.0052 0.0027 0.0049 0.0025 0.0036
8 0.0000 0.0020 0.0010 0.0024 0.0008 0.0013
9 0.0000 0.0007 0.0004 0.0011 0.0002 0.0004
10 0.0079 0.0003 0.0002 0.0005 0.0001 0.0001
ÿln L 185.0 172.4 160.0 177.9 181.5
BIC 418.3 398.1 416.7 409.0 416.2
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coe�cients, used as starting values, di�ered in order of magnitude by no more than 10. The
GECk regression parameter estimates (not reported) di�ered from Poisson estimates by, on
average, 10%, and the dispersion parameter â � ÿ0�258 was highly signi®cant with a t-statistic
of 3.74. The predicted probabilities from this model, presented in the column labelled GECk in
Table V, are roughly as close to the actual probabilities as those from double Poisson. Again the
PP1 model is clearly preferred with predicted probabilities closer to the actual, considerably
higher ln L and lower BIC.

4.2. Health Service Utilization

Several health service utilization measures are analysed by Cameron et al. (1988) using data from
the 1977±8 Australian Health Survey. Here we model the number of health professional visits
(HPVISITS), de®ned as the number of consultations in the past four weeks with non-doctor
health professionals (chemist, optician, physiotherapist, social worker, district community nurse,
chiropodist, or chiropractor). The regressors are:

(1) Socio-economic variablesÐan indicator variable for whether female (SEX ), age in years
(AGE ), age-squared (AGESQ), annual income in hundreds of dollars (INCOME ).

(2) Health insurance status indicator variablesÐprivate insurance cover (LEVYPLUS ), free
government insurance cover due to low income (FREEPOOR) and free government cover
due to old age, disability or veteran status (FREEREPA). The omitted category is the
default government Medibank insurance cover paid for by an income levy (LEVY ).

(3) Recent health-status measuresÐnumber of illnesses in past two weeks (ILLNESS ) and
number of days of reduced activity in past two weeks due to illness or injury (ACTDAYS ).

(4) Long-term health status measuresÐgeneral health questionnaire score using Goldberg's
method with high score indicating bad health (HSCORE ), indicator variable for chronic
condition not limiting activity (CHCOND1), and indicator variable for chronic condition
limiting activity (CHCOND2).

The most notable feature of the data is overdispersion. The sample mean of y is 0.215 and
sample variance is 0.932. This is a considerable amount of overdispersion �0�932=0�215 � 4�335�,
which only partially disappears as regressors are added. Statistical tests strongly reject the null
hypothesis of no overdispersion. The frequencies for 0, 1, 2, . . . , 11 visits in the sample of size 5190
are, respectively, 0.909, 0.054, 0.016, 0.003, 0.005, 0.001, 0.002, 0.007, 0.001, 0.002, 0.000, 0.001.

The PP5 model is preferred to PP1±PP4 and PP6. Table VI presents parameter estimates,
t-statistics, and mean marginal e�ects for the PP5 model, along with those for the Poisson and
negative binomial (NB). For NB we use the Negbin 2 version with variance equal to li � dl2i
where the dispersion parameter d is reported in the row labelled d and a1. The PP5 estimates
reveal that the most important determinant of health professional visits is health status, with all
but ILLNESS statistically signi®cant at 5%. The coe�cient of the insurance indicator variable
LEVYPLUS is consistent with the view that more generous health insurance is associated with
greater use of health services, while the positive coe�cient of FREEREPA most likely re¯ects
health problems by people in this group not fully picked up by health-status regressors. The
coe�cient of FREEPOOR is essentially zero, indicating that those who receive free government
insurance cover due to low income use the same amount of services as those who receive the same
government health insurance by paying the Medibank levy. The socio-economic e�ects are of the
expected signs though generally statistically insigni®cant. Particularly striking is the small
coe�cient and strong statistical insigni®cance of INCOME.
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Comparing statistical signi®cance across models, the PP5 model has t-statistics that are quite
similar to the sandwich t-statistics for Poisson. Comparing t-statistics instead to the NB model,
the PP5 model has t-statistics that are marginally lower on average, aside from ILLNESS, which
has much larger mean e�ect in the NB model compared to the PP5.

Table VI also compares the predicted e�ects of changes in regressors on the mean. Generally
the marginal e�ects are greater in the NB model than in the Poisson model. For the PP5 and
other PPp models there is no such general tendency with marginal e�ects closer to those of the
Poisson. This is most likely a consequence of residuals summing to zero for the Poisson and PPp
models but not for the NB model, so that for the NB model the average of the ®tted means di�ers
from �y.

Table VII reveals that the PPp models do very well in ®tting the distribution, especially
compared to the Poisson. The major gain in log-likelihood is going from Poisson to PP1, though
the data support adding additional terms and the preferred model is a PP5 model. Both the PP4
and PP5 models have higher log-likelihood than the NB model, though are considerably less
parsimonious. Using BIC to discriminate between non-nested models with a di�erent number of
parameters, both PP4 and PP5 are preferred to NB.

5. CONCLUSIONS

The simulations and applications demonstrate that the new class of models proposed can be
estimated, even up to the sixth order in the health application. The distributional ®t is quite good
on average, and reasonable predictions of e�ects of regressors on the conditional mean are
obtained.

Like other series expansion models, such as expansions around the normal for continuous
data, the PPp model has log-likelihood which is not globally concave and hence multiple optima

Table VI. Health professional visits: parameter estimates, t-statistics, and mean marginal e�ects for
Poisson, NB, and PP5 models

Variable Estimate t-statistic Mean e�ect
Poisson NB PP5 Poisson NB PP5 Poisson NB PP5

ONE ÿ2�444 ÿ2�784 ÿ1�199 ÿ5�32 ÿ6�40 ÿ7�81
SEX 0.332 0.231 0.093 2.20 1.85 2.47 0.071 0.063 0.076
AGE ÿ3�308 ÿ2�676 ÿ0�693 ÿ1�46 ÿ1�10 ÿ1�08 ÿ0�710 ÿ0�725 ÿ0�571
AGESQ 4.390 3.854 0.949 1.75 1.47 1.43 0.942 1.044 0.783
INCOME ÿ0�035 ÿ0�062 ÿ0�015 ÿ0�16 ÿ0�33 ÿ0�24 ÿ0�008 ÿ0�017 ÿ0�012
LEVYPLUS 0.328 0.299 0.111 1.84 1.89 1.90 0.070 0.081 0.092
FREEPOOR 0.015 ÿ0�197 0.030 0.04 ÿ0�56 0.18 0.003 ÿ0�053 0.019
FREEREPA 0.482 0.588 0.144 2.41 2.69 2.20 0.104 0.159 0.119
ILLNESS 0.055 0.144 0.014 1.31 3.09 1.35 0.012 0.039 0.012
ACTDAYS 0.098 0.137 0.020 6.16 8.03 6.92 0.021 0.037 0.017
HSCORE 0.045 0.074 0.010 1.80 2.65 1.73 0.010 0.020 0.008
CHCOND1 0.519 0.412 0.199 3.28 2.88 3.64 0.111 0.111 0.164
CHCOND2 1.079 1.124 0.322 5.12 6.14 5.45 0.232 0.111 0.266
d and a1 8.909 2.740 13.19 4.32
a2 ÿ6�351 ÿ5�35
a3 3.869 5.26
a4 ÿ0�939 ÿ5�08
a5 0.078 4.91
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can arise. In some simulations there was advantage to using a variant of fast simulated annealing,
but in the applications such problems did not arise. At the least, however, it is advisable to try a
range of starting values.

The PPp model was particularly useful in application to underdispersed takeover bids data,
where it clearly outperformed the double Poisson and GECk models and was more parsimonious
than the hurdle model. For application to overdispersed health-utilization data, ®tted very well
by the negative binomial model, the PPp model was able to outperform the negative binomial
model but was not as parsimonious. In this latter example the PPp model had estimates of the
average marginal e�ect of regressors on the conditional mean somewhat di�erent from negative
binomial and similar to Poisson, most likely a consequence of the PPp model property that, like
Poisson regression residuals, sum to zero. On the basis of these applications the PPp model is as
useful as standard parametric models for counts. It is not necessarily as parsimonious so that, for
example, if the negative binomial ®ts an overdispersed data model very well there is unlikely to be
great advantage in moving to the PPp model.
The particular model considered here was chosen in part for its relative simplicity of use and

ease of exposition. There are clearly many possible variants.
First, the weights aj in the polynomial function h��� can be permitted to be a function of

regressors, in which case aj is replaced by aji � X0i�j. This is done in applications to continuous
time-series data, where the regressors are lags of the dependent variable being modelled. In the
cross-section case considered here such an extension runs the risk of introducing many more
parameters, unless attention is restricted to the one or two regressors thought to be most
important.

Second, baseline densities other than the Poisson might be chosen. In particular the negative
binomial is an obvious choice. This o�ers the prospect of more parsimonious models for
overdispersion, while still being applicable to underdispersed data as it nests the PPp model as a
special case (the Poisson is a special case of the negative binomial).
Third, the polynomial could be a function of a transformation of y rather than y itself, i.e. the

polynomial function h� y j a� is instead h�t� y� j a� for speci®ed function t� y�. One possibility is to
centre around the mean using t� y� � � y ÿ l�. A second possibility is to standardize to

Table VII. Health professional visits: predicted probabilities from Poisson, NB, and PPp models

Counts Empirical Poisson NB PP1 PP2 PP3 PP4 PP5

0 0.9087 0.8311 0.9088 0.8955 0.8898 0.9067 0.9093 0.9087
1 0.0536 0.1377 0.0521 0.0573 0.0759 0.0558 0.0543 0.0536
2 0.0162 0.0222 0.0167 0.0091 0.0058 0.0142 0.0152 0.0162
3 0.0027 0.0056 0.0075 0.0211 0.0070 0.0022 0.0024 0.0026
4 0.0050 0.0020 0.0040 0.0114 0.0093 0.0017 0.0041 0.0055
5 0.0012 0.0008 0.0024 0.0040 0.0069 0.0072 0.0024 0.0008
6 0.0019 0.0003 0.0016 0.0012 0.0034 0.0068 0.0027 0.0018
7 0.0071 0.0001 0.0011 0.0003 0.0013 0.0036 0.0034 0.0051
8 0.0012 0.0000 0.0008 0.0000 0.0004 0.0013 0.0029 0.0037
9 0.0015 0.0000 0.0006 0.0000 0.0001 0.0004 0.0018 0.0015
10 0.0004 0.0000 0.0005 0.0000 0.0000 0.0000 0.0009 0.0004
11 0.0006 0.0000 0.0004 0.0000 0.0000 0.0000 0.0003 0.0001
ÿln L 3109.4 2160.5 2425.3 2297.6 2192.6 2142.6 2136.4
BIC 6329.9 4440.8 4970.4 4723.5 4522.0 4430.5 4426.9
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approximately constant variance using t� y� � � y ÿ l�= ���
l
p

. This complicates the analysis
considerably, and like Hall (1990) we do not take this approach here. Note also that such
standardizations will not produce a variable with mean zero and variance one since, for example,
E� y� 6� l from Section 2.

Extension of the single-equation cross-section model in this paper to more complicated types
of count data is of particular interest. One example is multivariate data, such as bivariate counts
for use of two di�erent but related types of health service. Existing models generally place
restrictions on the correlation coe�cient, including restricting it to be non-negative.

APPENDIX A: DERIVATION OF RESULTS

Derivation of Equations (3) and (4)

While proof is for the discrete case, the same result holds for the continuous case. We ®rst derive
equation (4).
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Derivation of equation (3) is obtained by setting r � 0 in equation (4) and using E� y0� � 1.

Derivation of Equation (13)

For the Poisson density,

@ log f � y j l�
@l

� y ÿ l
l

and
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For the mean function (12)

@l�X0bbb�
@bbb

� lX

Substituting these results into the ®rst equation of (11):
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APPENDIX B: COMPUTATIONAL METHODS

The method to compute parameter estimates is a hybrid of fast simulated annealing (FSA) and
the standard gradient methods, based on Horowitz (1992).
Simulated annealing di�ers from gradient methods in permitting at times movements that

decrease rather than increase the objective function (which here we seek to maximize), so that one
is not locked into moving steadily towards a local optimum. Key parameters of the algorithm are
the step length V , and the temperature T . For a description of simulated annealing and
explanation of the term temperature, see Go�e, Ferrier, and Rogers (1994, pp. 68±70). Fortran
code for the program used by Go�e et al. (1994) is available at http://netec.mcc.ac.uk/ Ä adnetec/
CodEc/Fortran/SimAnnealing.si. A Gauss program by E. G. Tsionas for `Global optimization
of statistical functions with simulated annealing' is available at the Gauss archive at http://
netec.mcc.ac.uk/ Ä adnetec/CodEc/GaussAtAmericanU/index.html.

FSA, proposed by Szu and Hartley (1987), is a faster method that replaces the uniform �ÿ1; 1�
random number r in equation (1) of Go�e et al. (1994) by a Cauchy random variable ri scaled by
the temperature. It also permits a ®xed step length V and a simpler adjustment of the temperature
with equation (3) of Go�e et al. (1994) replaced by T 0 � T=Ns, where Ns is the number of FSA
iterations.

In principle, the models in this paper can be estimated using only FSA. This method can be
shown to converge to the global maximum, but is computationally very expensive. Instead we
reduce computation time by following Horowitz (1992) and using FSA to obtain starting values
for gradient methods. The algorithm is:

(1) Search for an optimum using FSA. Stop when there is relatively little absolute di�erence
between the average function values over the last ten iterations and the optimal function
value to date.

(2) Check that, for the parameter values obtained from step 1, the Hessian is negative de®nite.
(a) If this test is failed, then return to step 1 using these parameter values as starting

values, and signi®cantly decrease the temperature.
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(b) If this test is passed, then begin BFGS iterations (cf. Fletcher, 1981) moving to
Newton±Raphson iteration using these parameter values as starting values. The
estimates obtained are the optimum estimates and estimation stops.

(3) If optimum estimates are not obtained after 250 FSA simulations, or if step 2(a) is
encountered six times, then use these current parameter estimates as starting values for
BFGS iterations.

This procedure was performed from ten di�erent starting values. The starting values were
random draws from the normal distribution, added to the Poisson parameter estimates in the case
of the regression parameters bbb.

For PP1 to PP5 analytical ®rst and second derivatives were used in the Newton±Raphson
algorithm. Results were checked against numerical derivatives. For PP6 only analytical ®rst
derivatives were used. The ®rst derivatives are very easily programmed for the Poisson with
exponential meanÐsee equation (13) and the second equation in (11). The second derivatives are
not given in the paper but the computer code is available. The main reason for using analytical
derivatives is for quicker computation, especially when many simulations are being performed.
There are several choice variables in implementing the algorithm. The above describes the

method used in applications. For simulations we used three di�erent starting values and in step 3
we used up to 50 FSA simulations or three encounters of step 2(a). Other choice variables are the
temperature and step length. The Gauss code used is available at the journal web-site.
Once PPp parameter estimates were obtained their standard errors were computed using the

Hessian, except in the Table III simulations where other estimates were additionally used. In the
applications Tables IV and VI the Poisson standard errors and t-statistics used the sandwich form
which is robust to departures from variance±mean equality, while other models, including PPp,
used the Hessian.
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